TCP commandsto remote management of FDM-S1/52/DUO devicesbased on the new FDMSW?2
TCP server ver 0.11.

Any application client can set up a communication with FDMSW?2’s server through a TCP connection
or Web HTTP connection. FDMSW?2’s web http server is active on any IP address.

The client can manage FDM device in remote mode by sending string commands. The commands are

the same for both the TCP and HTTP servers. Here there is an index of all command implemented:

W oo N R WNE

L S S O S
N o WN RO

SR: state receiver command

CF: central frequency command

LF: locked state command
SN: SNAP mode command
FX: tuning frequency command

FS: frequency step command

TX: transmission enable command

MD: demodulation mode command

SM: s-meter command

. RX: s-meter command in dBm

. GS-2: spectrum command in digit format

. GS-3: spectrum configuration parameter command

. GS-4: spectrum command in digit short format
. Specification for the correct FDM tuning (STRONGLY RECOMMENDED!!!)

. RC: recording .wav file command
. ST: read device info

. MS: memories settings command[new]

Command Description

SR Get/Toggleselected virtual receiver state on FDM device

Set 1 2 3 4 5 6 7 8 10
S R P1 P2 | P3="1 ;

Get 1 2 3 4 5 6 7 8 10
S R P1 P2 ;

Answer 1 2 3 4 5 6 7 8 10
S R P1 P2 P3 ;

Parameters:

*P1(input)

Index for channels/data-streams on
FDM (1 digit)

Index is coded with 1 char ranges
from ‘0’ char to channel number-1
char.

*P2(input)

Index for virtual receiver on FDM (1
digit)

Index is coded with 1 char ranges
from ‘0" char to maximum virtual
receiver number-1 char

*P3(input)

Set to ‘1’ to toggle virtual receiver
state. Any other char value does
nothing.

*P3(output)

State of selected virtual receiver(1
digit).

State is coded with 1 char ranges
from ‘0" to 2":

‘0’: receiver is off
‘1’: receiver is on, but not active
‘2’: receiver is on and active

SR command modifies or readseach virtual receiver state on a specified data-stream. The maximum
virtual receiver number is 4 for each data channel, then receiver index ranges from 0 to 3.

The change of virtual receiver state is very important because a selected receiver must be active to
do:

e The change of receiver locked to central frequency state (see LF set command description)
e The change of receiver demodulation (see MD set command description)

Besides, a selected receiver must be on but it can be not active to do:
e The correct reading of S-meter value (see SM and RX commands descriptions)

To modify state on a selected virtual receiver, the string “SRP1P21;” must be sent to TCP server: P1is
the index value for data channel on FDM and P2 is the index value for selected receiver. Then:

e If P2 receiver on P1 data channel is off (state code is 0) => the command switches P2
receiver to on and active state

e If P2 receiver on P1 data channel is on (state code is 1) => the command switches P2 receiver
to on and active state

e If P2 receiver on P1 data channel is on and active (state code is 2) => the command switches
P2 receiver to off state

If a selected receiver is on and active (state code is 2), when a SR command is sent to server to set a
new active receiver, the old selected receiver is set to on state (state code is 1) because only one
receiver can be in active state at the same time.

Examples for ‘Get’/’Set’

SR command acts as RX1, RX2, RX3, RX4 buttons on FDMSW?2 user interface, sofor example it will be
compared the FDMSW?2 user interface operations and the equivalent TCP interface commands.

The default states at power on for each virtual receiver are (see at Figure 1a and 1b):

e Receiver number 1 is on and active => its state value is 2
e Receiver number 2, 3, 4 are off => their state values are 0

Figure 1a: Virtual receiver 1 selected and active.

b, .\'-.-‘l,.l.a.‘-‘» s Mot i s "

Figure 1b: Virtual receiver 1 active,displayed on spectrum.

In Figures 1a and 1b there is FDMSW?2 user interface configuration for virtual receiver states. To
know the same states configuration by SR get command (supposing to be on first data stream), it
must be sent:

First channel, first virtual receiver:

Get-string to server TCP: “SR00;”

Answer-string from server TCP: “SR002;”=> ‘2’ value means the receiver 1 is on and active
First channel, second virtual receiver:

Get-string to server TCP: “SROQ;”

Answer-string from server TCP: “SRO10;”=> ‘0’ value means the receiver 2 is off
First channel, third virtual receiver:

Get-string to server TCP: “SR02;”

Answer-string from server TCP: “SR020;”=> ‘0’ value means the receiver 3 is off
First channel, fourth virtual receiver:

Get-string to server TCP: “SR03;”

Answer-string from server TCP: “SR030;”=> ‘0’ value means the receiver 4 is off

To change active receiver to the number 3, click on RX3 button of FDMSW?2 user interface, and all
states will change as (see Figure 2a and 2b):

e Receiver number 3 is on and active => its state value is 2
e Receiver number 1 is on and not active => its state value is 1
e Receiver number 2, 4 are off => their state values are 0

Figure2a: Virtual receiver 3 selected and active, virtual receiver 1 on.

.-a.,.-.\&‘.,..k‘.-.,ﬂ.\ﬂ“. . b Ao, iy

Figure 2b: Virtual receiver 3 active, virtual receiver 1 on, displayed on spectrum.

To use SR set command in order to change virtual receiver number 3, it must be sent (supposing to
be on first data stream):

First channel, third virtual receiver:

Set-string to server TCP: “SR021;”=> ‘1’ value toggles the third receiver state to on and active
and puts the first receiver to on and not active state

Answer-string from server TCP: “SR021;”=> ‘1’ value has no mean in this case
Now, to know all states, SR get commands are:
First channel, first virtual receiver:

Get-string to server TCP: “SR0@;”

Answer-string from server TCP: “SR001;”=> ‘1’ value means the receiver 1 is on
First channel, second virtual receiver:

Get-string to server TCP: “SROA;”

Answer-string from server TCP: “SR010;”=> ‘0’ value means the receiver 2 is off
First channel, third virtual receiver:

Get-string to server TCP: “SR02;”

Answer-string from server TCP: “SR022;”=> ‘2’ value means the receiver 3 is on and active
First channel, fourth virtual receiver:

Get-string to server TCP: “SR08;”

Answer-string from server TCP: “SR030;"”=> ‘0’ value means the receiver 4 is off

To change active receiver to the number 2, click on RX2 button on FDMSW?2 user interface, and all
states will change as (see Figure 3a and 3b):

e Receiver number 2 is on and active => its state value is 2

e Receiver number 1 is on and not active => its state value is 1
e Receiver number 3 is on and not active => its state value is 1
e Receiver number 4 is off => its state value is 0

Figure3a: Virtual receiver 2 selected and active, virtual receiver 1 and 3 on.

Figure 3b: Virtual receiver 2 active, virtual receiver 1 and 3 on, displayed on spectrum.

To use SR set command in order to change virtual receiver number 2, it must be sent (supposing to
be on first data stream):

First channel, second virtual receiver:

Set-string to server TCP: “SR011;”=> ‘1’ value toggles the second receiver state to on and
active and puts the third receiver to on and not active state

Answer-string from server TCP: “SROd1;”=> ‘1’ value has no mean in this case
Now, to know all states, SR get commands are:
First channel, first virtual receiver:

Get-string to server TCP: “SR00;”

Answer-string from server TCP: “SR001;”=> ‘1’ value means the receiver 1 is on
First channel, second virtual receiver:

Get-string to server TCP: “SRO{;”

Answer-string from server TCP: “SR012;”=> ‘2’ value means the receiver 2 is on and active
First channel, third virtual receiver:

Get-string to server TCP: “SR02;”

Answer-string from server TCP: “SR021;”=> ‘1’ value means the receiver 3 is on
First channel, fourth virtual receiver:

Get-string to server TCP: “SR08;”

Answer-string from server TCP: “SR030;"”=> ‘0’ value means the receiver 4 is off

To turn off the number 3 receiver, it must be on and active: click on RX3 buttonto activate receiver
(see Figure 4) and click on RX3 buttonto turn it off (see Figure 5a and 5b). States will change as:

First click on RX3 button

e Receiver number 3 is on and active => its state value is 2

e Receiver number 1 is on and not active => its state value is 1
e Receiver number 2 is on and not active => its state value is 1
e Receiver number 4 is off => its state value is 0

BN KN -~ |

Figure 4: Virtual receiver 3 selected and active, virtual receiver 1 and 2 on (spectrum is the same as in Figure 3b).

To use SR set command in order to change virtual receiver number 3 state, it must be sent
(supposing to be on first data stream):

First channel, third virtual receiver:

Set-string to server TCP: “SR021;”=> ‘1’ value toggles the third receiver state to on and active
and puts second receiver to on and not active state

Answer-string from server TCP: “SR021;"”=> ‘1’ value has no mean in this case
Now, to know all states, SR get commands are:
First channel, first virtual receiver:

Get-string to server TCP: “SR00;”

Answer-string from server TCP: “SR001;”=> ‘1’ value means the receiver 1 is on
First channel, second virtual receiver:

Get-string to server TCP: “SRO{;”

Answer-string from server TCP: “SROd1;”=> ‘1’ value means the receiver 2 is on
First channel, third virtual receiver:

Get-string to server TCP: “SR02;”

Answer-string from server TCP: “SR022;”=> ‘2’ value means the receiver 3 is on and active
First channel, fourth virtual receiver:

Get-string to server TCP: “SR08;”

Answer-string from server TCP: “SR030;"”=> ‘0’ value means the receiver 4 is off

Second click on RX3 button

e Receiver number 3 is off => its state value is 0
e Receiver number 1 is on and active => its state value is 2
e Receiver number 2 is on and not active => its state value is 1

e Receiver number 4 is off => its state value is 0

Figure 5a: Virtual receiver 3off, virtual receiver 1 selected and active, virtual receiver 2 on.

ol ey

Figure 5b: Virtual receiver 1 active, virtual receiver 2 on, displayed on spectrum.

To use SR set command in order to change virtual receiver number 3, it must be sent (supposing to
be on first data stream):

First channel, third virtual receiver:

Set-string to server TCP: “SR021;”=> ‘1’ value toggles the third receiver state to offand puts
first receiver to on and active state

Answer-string from server TCP: “SR021;”=> ‘1’ value has no mean in this case

Now, to know all states, SR get commands are:
First channel, first virtual receiver:

Get-string to server TCP: “SR00;”

Answer-string from server TCP: “SR002;”=> ‘2’ value means the receiver 1 is on and active
First channel, second virtual receiver:

Get-string to server TCP: “SRO{;”

Answer-string from server TCP: “SROd1;”=> ‘1’ value means the receiver 2 is on
First channel, third virtual receiver:

Get-string to server TCP: “SR02;”

Answer-string from server TCP: “SR020;”=> ‘0’ value means the receiver 3 is off
First channel, fourth virtual receiver:

Get-string to server TCP: “SR03;”

Answer-string from server TCP: “SR030;”=> ‘0’ value means the receiver 4 is off

CF Get/Set Central frequency on FDM device Parameters:
*P1(input)
Set 1 2 3 4 5 6 7 8 9 10 Index for channels/data-streams on

C | F | pL [P2 | P3 |P3| P3| P3| P3 | p3 | FDM(ldigit)

11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 'f”dexl:)s, C‘;ded Wi:‘ 1 Clhar rabngei
P3 pP3 P3 P3 P3 rom char to channel number-

char.
Get 1 2 3 4 5 6 7 8 9 10 *p2(input)
F P1 P2 ; Unused for this command and set
Answer 1 2 3 4 5 6 7 8 9 10 to ‘0’

F P1 P2 P3 P3 P3 P3 P3 P3 *P3(input/output)

11 12 13 14 15 16 17 18 19 20 Central Frequency (11 digits) isan
P3 P3 P3 P3 P3 ; unsigned integer value expressed in
Hz.

Central Frequency is coded with 11
chars, one char for each digit of
frequency value.

CF command modifies or reads local oscillator frequency on FDM, or more local oscillator
frequencies if FDM hardware configuration has more than one data-stream. For FDM-DUO central
frequency is the same as VFOA frequency, thenthis command is used to get or set VFOA frequency.

Examples for ‘Set’

Example: Setting 1170000 Hz central frequency on FDM configuration at 192kHz with one channel or
data-stream:

Set-string to server TCP: “CF0000001170000;”
Answer-string fromserver TCP: “CF0000001170000;”

Example: Setting 1170000 Hz central frequency on FDM configuration at 384kHz with twochannels
or data-streams:

First channel
Set-string to server TCP: “CF0000001170000;”
Answer-string from server TCP: “CFO000001170000;”
Second channel
Set-string to server TCP: “CF1000001170000;”
Answer-string from server TCP: “CF1000001170000;”
=> P1 value ‘0’ means first channel;

=> P1 value ‘1’ means second channel;

=> P2 value is always ‘0’, unused for this command.

Examples for ‘Get’

Example: Getting 1170000 Hz central frequency on FDM configuration at 192kHz with one channel
or data-stream:

Get-string to server TCP: “CF0Q;”
Answer-string from server TCP: “CFO800001170000;”

Example: Getting 1170000 Hz central frequency on FDM configuration at 384kHz with two channels
or data-streams:

First channel

Get-string to server TCP: “CF0Q;”

Answer-string from server TCP: “CFO000001170000;”
Second channel

Get-string to server TCP: “CF10;”

Answer-string from server TCP: “CF1000001170000;”
=> P1 value ‘0’ means first channel;
=> P1 value ‘1’ means second channel;

=> P2 value is always ‘0’, unused for this command

LF Get/Setlocked stateon selected virtual receiver of FDM device Parameters:

*P1(input)
Set 1 2 3 4 5 6 7 8 9 10 Index for channels/data-streams on
L F | p1 [P2 p3 ; FOM (1 digit)
G 1) 3 7 B 5 7 P 9 10 Index is coded with 1 char ranges
et from ‘0’ char to channel number-1
L F P1 P2 ; char.
Answer 1 2 3 4 5 6 7 8 9 10 *P2(input)
L F P1 P2 P3 ; Index for virtual receiver on FDM (1
digit)

Index is coded with 1 char ranges
from ‘0’ char to maximum virtual
receiver number-1 char
*P3(input/output)

Locked state value.lt is coded with
1 char equal to:

‘0’: virtual receiver is in unlocked
state

‘1’: virtual receiver is locked to
central frequency

‘2’: virtual receiver is locked to
absolute frequency

LF command modifies or reads locked statefor a selected virtual receiver on a specified data-stream.
The maximum virtual receiver number is 4 for each data channel, then receiver index ranges from 0
to 3. This command acts as Lock To CF button or Lock ABS button in FDMSW?2 user interface.

LF set-command modifies the locked state only if selected virtual receiver is active; then, before
using this command, get information about the state for the virtual receiver and modify it as active if
you want to change locked to central frequency state (see SR command).

To set an active receiver as locked to CF or locked to absolute frequency, make sure that it is in
unlocked state before locking; if it isn’t, set it in unlocked state.

Locked state can be:

e Unlocked: receiver is not locked to central frequency and it is not locked to absolute
frequency; P3 parameter in LF-set command and LF-answer is ‘0’;

e Locked to Central Frequency: receiver is locked to central frequency and P3 is ‘1’;

e lLocked to Absolute Frequency: receiver is locked to absolute frequency and P3 is ‘2’;

Examples for ‘Set’

Example: Setting locked to central frequency state for active virtual receiver of the first channel on
FDM configuration at 384kHz with two channels or data-streams (suppose the active receiver is the
second one in the first data stream):

First channel, second virtual receiver

Set-string to server TCP: “LFO{0;"”

Answer-string from server TCP: “LFOL0;”=>‘0" value means receiver will be set to unlocked
state

Set-string to server TCP: “LFOd1;”

Answer-string from server TCP: “LFOd1;”=>‘1" value means receiver will be set to locked to
central frequency state

Example: Setting locked to absolute frequency state for active virtual receiver of the second channel
on FDM configuration at 384kHz with two channels or data-streams (suppose the active receiver is
the third one in the second data stream):

Second channel, third virtual receiver
Set-string to server TCP: “LF120;”

Answer-string from server TCP: “LF120;” =>‘0’ value means receiver will be set to
unlocked state

Get-string to server TCP: “LF122;"

Answer-string from server TCP: “LF122;” =>2" value means receiver will be set to
locked to absolute frequency

Examples for ‘Get’

Example: Getting locked state for active virtual receiver of the first channel on FDM configuration at
384kHz with two channels or data-streams (suppose the active receiver is the second one in the first

data stream):
First channel, second virtual receiver
Get-string to server TCP: “LFOX;”

Answer-string from server TCP: “LFO41;” =>‘1’" value means receiver is locked to
central frequency

Example: Getting locked state for active virtual receiver of the second channel on FDM configuration
at 384kHz with two channels or data-streams (suppose the active receiver is the third one in the

second data stream):
Second channel, third virtual receiver
Get-string to server TCP: “LF12;”

Answer-string from server TCP: “LF122;” =>‘2" value means receiver is locked to
absolute frequency

SN Get/Set SNAP state on FDM device

Set 1 2 3 4 5 6 10
S N P1 P2 P3 ;

Get 1 2 3 4 5 6 10
S N P1 P2 ;

Answer 1 2 3 4 5 6 10
S N P1 P2 P3 ;

Parameters:

*P1(input)

Index for channels/data-streams on
FDM (1 digit)

Index is coded with 1 char ranges
from ‘0’ char to channel number-1
char.

*P2(input)

Unused for this command and set
to ‘0’

*P3(input/output)

SNAP state value. It is coded with 1
char equal to:

‘0’: SNAP mode off

‘1’: SNAP mode on

SN command modifies or reads SNAP statefor a specified data-stream on FDM device.

Examples for ‘Set’

Example: Set SNAP modeon FDM configuration at 192kHz with one channel or data-stream:

Set-string to server TCP: “SN001;”

Answer-string from server TCP: “SN0OQ1;”

Example: Set SNAP modeon FDM configuration at 384kHz with two channels or data-streams:

First channel

Second channel

=> P1 value ‘0’ means first channel;

=> P1 value ‘1’ means second channel;

=> P2 value is always ‘0’, unused for this command.

Examples for ‘Get’

Set-string to server TCP: “SN001;”

Answer-string from server TCP: “SN0OQ1;”

Set-string to server TCP: “SN101;”

Answer-string from server TCP: “SN101;"

Example: Get SNAP modeon FDM configuration at 192kHz with one channel or data-stream:

Get-string to server TCP: “SN0@;”
Answer-string from server TCP: “SN0Q1;”
Example: Get SNAP modeon FDM configuration at 384kHz with two channels or data-streams:
First channel
Get-string to server TCP: “SN0O@;”
Answer-string from server TCP: “SN0Q1;”
Second channel
Get-string to server TCP: “SN18@;”
Answer-string from server TCP: “SN101;”
=> P1 value ‘0’ means first channel;
=> P1 value ‘1’ means second channel;

=> P2 value is always ‘0’, unused for this command

EX Get/Set Tuning Frequency on virtual receiver of FDM device

Set 1 2 3 4 5 6 7 8 9 10
F X P1 P2 P3 P3 P3 P3 P3 P3
11 12 13 14 15 16 17 18 19 20
P3 P3 P3 P3 P3 ;

Get 1 2 3 4 5 6 7 8 9 10
F X PL | P2 | ;

Answer 2 3 4 5 6 7 8 9 10

X P1 P2 P3 P3 P3 P3 P3 P3

11 12 13 14 15 16 17 18 19 20
P3| P3| P3 [P3| P3|

Parameters:

*P1(input)

Index for channels/data-streams on
FDM (1digit).

Index is coded with 1 char ranges
from ‘0’ char to channel number-1
char

*P2(input)

Index for virtual receiver on FDM
(1digit)

Index is coded with 1 char ranges
from ‘0’ char to maximum virtual
receiver number-1 char
*P3(input/output)

Tuning Frequency (11 digits) is an
unsigned integer value expressed in
Hz.

Tuning Frequency is coded with 11
chars, one char for each digit of the
frequency value.

FX command modifies or reads tuning frequency for a selected virtual receiver on a specified data-
stream. The maximum virtual receiver number is 4 for each data channel, then receiver index ranges

from 0 to 3.

FX set-command doesn’t modify local oscillator frequency on FDM (it is not a CF command!), but
when the virtual receiver selected is locked to Central Frequency, FX set-command acts as a CF set-

command.

Then, before using FX set-command, get information about locked to CF state for each virtual
receiver and modify it if it is needed for tuning (see LF command).

Examples for ‘Set’

Example: Setting different tuning frequency for each virtual receiver on FDM configuration at

384kHz with two channels or data-streams:

First channel, first virtual receiver

First channel, second virtual receiver

First channel, third virtual receiver

Set-string to server TCP: “FX0000001174000;”

Set-string to server TCP: “FX0100001175000;”

Answer-string from server TCP: “FX0000001174000;”

Answer-string from server TCP: “FX0100001175000;”

Set-string to server TCP: ”FXOI00001176000;"

Answer-string from server TCP: ”FXOI00001176000;”
First channel, fourth virtual receiver

Set-string to server TCP: ”FXOI00001177000;"

Answer-string from server TCP: ”FXOI00001177000;”

Second channel, first virtual receiver

Set-string to server TCP: ”FX1I00001166000;"

Answer-string from server TCP: ”FX1I00001166000;”
Second channel, second virtual receiver

Set-string to server TCP: ”FX1I00001165000;"

Answer-string from server TCP: ”FX1I00001165000;”
Second channel, third virtual receiver

Set-string to server TCP: ”FX1I00001164000;"

Answer-string from server TCP: "FX1I00001164000;”
Second channel, fourth virtual receiver

Set-string to server TCP: ”FX1I00001163000;"

Answer-string from server TCP: "FX1I00001163000;”

Examples for ‘Get’

Example: Getting tuning frequency for each virtual receiver on FDM configuration at 384kHz with
two channels or data-streams:

First channel, first virtual receiver

Get-string to server TCP: ”FXOI;"

Answer-string from server TCP: ”FXOI00001174000;"
First channel, second virtual receiver

Get-string to server TCP: ”FXOI;"

Answer-string from server TCP: ”FXOI00001175000;"

First channel, third virtual receiver

Get-string to server TCP: “FX02;”

Answer-string from server TCP: “FX0200001176000;”
First channel, fourth virtual receiver

Get-string to server TCP: “FX03;”

Answer-string from server TCP: “FX0300001177000;”

Second channel, first virtual receiver

Get-string to server TCP: “FX10;”

Answer-string from TCP: “FX1000001166000;"”
Second channel, second virtual receiver

Get-string to server TCP: “FX11;”

Answer-string from TCP: “FX1100001165000;"”
Second channel, third virtual receiver

Get-string to server TCP: “FX12;”

Answer-string from TCP: “FX1200001164000;"”
Second channel, fourth virtual receiver

Get-string to server TCP: “FX13;”

Answer-string from TCP: “FX1300001163000;"”

=> P1 value ‘0’ means first channel;
=> P1 value ‘1’ means second channel;

=> P2 value ‘0’ means first receiver, ‘1’ means second receiver, ‘2’means third receiver, ‘3’ means
fourth receiver;

ES Get/Set Frequency Step on virtual receiver of FDM device Parameters:
*P1(input)
Set 1 2 3 4 5 6 7 8 9 10 Index for channels/data-streams on
F | s | pL | P2 | Pp3 [P3| P3 [P3| P3 | p3 | FOM(1digit).
11 12 13 14 15 16 17 | 18 19 20 Indexlis’ coded with 1 char ranges
P3 P3 P3 P3 P3 ; irhoaT 0’ char to channel number-1
Get 1 2 3 4 5 6 7 8 9 10 | ¥EEiRem
S P1 P2 ; Index for virtual receiver on FDM (1
Answer 1 2 3 4 5 6 7 8 9 10 digit)
S P1 P2 P3 P3 P3 P3 P3 P3 Index is coded with 1 char ranges
11 12 13 14 15 16 17 18 19 20 from ‘0’ char to maximum virtual
P3 P3 P3 P3 P3 ; receiver number-1 char

P3 parameter is Frequency
Stepvalueexpressed in Hz if
command is a Get command.

P3 parameter isan Increment /
Decrement value equal to +1 or -1
if command is a Set Command.

P3 is a signed integer type value
coded with 11 digits.

*P3s(input/output)

Sign of Frequency
Increment/Decrement value.
Sign is coded with 1 char equals to
‘+' or ‘-’

*P3i(input/output)

Integer part of Frequency Stepor
Increment /Decrement value (10
digits).

Integer part is coded with 10 chars,
one char for each digit of the
integer part of Frequency Stepor
Increment/Decrement value.

Stepor

FS command modifies or reads frequency stepfor a selected virtual receiver on a specified data-

stream. The maximum virtual receiver number is 4 for each data channel, then receiver index ranges
from O to 3.

FS get-command returns frequency step for a selected virtual receiver expressed in Hz. get-

command is independent from state of virtual state receiver (if it is off, on or active).

Frequency step are fixed in the FDMSW?2 software: all possible steps are allocated in a vector

displayed in the table below:

Frequency Step Vector
index 0 1 2 3 4 5 6 7 8 9
[Hz] 10 25 50 100 250 500 1000 2000 3000 4500
index 10 11 12 13 14 15 16 17 18 19
[Hz] 5000 7500 9000 10000 12500 25000 50000 100000 125000 150000

Then the current frequency step is associated to a index value of the frequency step vector in the
software.

To set a new frequency step you must to insert the increment value +1 or -1 in P3 field to increment
or decrement index value of current frequency step

For example if current frequency step is 500Hz, associated software index is equal to 5.If set
command has +1 in P3 field,index is incremented and the new frequency step is 1 kHz; if set
command has -1lin P3 field, index is decremented the new frequency step is 250 Hz.

FS set-command modify frequency step only if the selected virtual receiver in the command is active.
If it is not active, server answer is “???”,

Then before using set-command, get information about the state for the virtual receiver and modify
it as active if you want to change frequency step (see SR command).

Examples for ‘Get’

Example: Getting frequency stepfor each virtual receiver on FDM configuration at 384kHz with two
channels or data-streams (suppose the first receiver frequency step is 1kHz, the second receiver
frequency step is 10kHz, the third receiver frequency step is 10 Hz and the fourth receiver frequency
step is 150 kHz)

First channel, first virtual receiver

Get-string to server TCP: “FS00;”

Answer-string from server TCP: “FS08+0000001000;”
First channel, second virtual receiver

Get-string to server TCP: “FSO{;”

Answer-string from server TCP: “FSO4+0000010000;”
First channel, third virtual receiver

Get-string to server TCP: “FS02;”

Answer-string from server TCP: “FSO2+0000000010;"
First channel, fourth virtual receiver

Get-string to server TCP: “FS08;”

Answer-string from server TCP: “FSO08+0000150000;"

Second channel, first virtual receiver

Get-string to server TCP: “FS10;”

Answer-string from TCP: “FS10+0000001000;”
Second channel, second virtual receiver

Get-string to server TCP: “FS1{l];”

Answer-string from TCP: “FS1{+-0000010000;”
Second channel, third virtual receiver

Get-string to server TCP: “FS12;”

Answer-string from TCP: “FS12+0000000010;”
Second channel, fourth virtual receiver

Get-string to server TCP: “FS18;”

Answer-string from TCP: “FS18+0000150000;"

=> P1 value ‘0’ means first channel;
=> P1 value ‘1’ means second channel;

=> P2 value ‘0’ means first receiver, ‘1’ means second receiver, ‘2’means third receiver, ‘3’ means
fourth receiver;

Examples for ‘Set’

Example: Setting different frequency stepfor each virtual receiver on FDM configuration at 384kHz
with two channels or data-streams:

First channel, first virtual receiver (must be active)
Set-string to server TCP: “FS00+0000000001;”
Answer-string from server TCP: “FS00+0000000001;"
To verify, use get-command
Get-string to server TCP: “FS00;”

Answer-string from server TCP: “FS00+0000002000;”=>incremented from 1 kHz

First channel, second virtual receiver (must be active)

Set-string to server TCP: “FS01-0000000001;”

Answer-string from server TCP: “FSO4-0000000001;”
To verify, use get-command

Get-string to server TCP: “FSO{;”

Answer-string from server TCP: “FSO2+0000009000;"”=>decremented from 10 kHz
First channel, third virtual receiver (must be active)

Set-string to server TCP: “FS02-0000000001;”

Answer-string from server TCP: “FSO2-0000000001;”
To verify, use get-command

Get-string to server TCP: “FS02;”

Answer-string from server TCP: “FS02+0000000010;”=> min limit reached 10 Hz
First channel, fourth virtual receiver (must be active)

Set-string to server TCP: “FS03+0000000001;”

Answer-string from server TCP: “FSO08+0000000001;"
To verify, use get-command

Get-string to server TCP: “FS08;”

Answer-string from server TCP: “FS08+0000150000;”=>max limit reached 150 kHz

Second channel, first virtual receiver (must be active)
Set-string to server TCP: “FS10+0000000001;”
Answer-string from server TCP: “FS10+0000000001;"

To verify, use get-command
Get-string to server TCP: “FS10;”

Answer-string from server TCP: “FS10+0000002000;”=>incremented from 1 kHz

Second channel, second virtual receiver (must be active)

Set-string to server TCP: “FS11-0000000001;”

Answer-string from server TCP: “FS14-0000000001;”
To verify, use get-command

Get-string to server TCP: “FS1{l];”

Answer-string from server TCP: “FS11+0000009000;"”=>decremented from 10 kHz
Second channel, third virtual receiver (must be active)

Set-string to server TCP: “FS12-0000000001;”

Answer-string from server TCP: “FS12-0000000001;”
To verify, use get-command

Get-string to server TCP: “FS12;”

Answer-string from server TCP: “FS12+0000000010;”=> min limit reached 10 Hz
Second channel, fourth virtual receiver (must be active)

Set-string to server TCP: “FS13+0000000001;”

Answer-string from server TCP: “FS18+0000000001;"
To verify, use get-command

Get-string to server TCP: “FS18;”

Answer-string from server TCP: “FS18+0000150000;”=>max limit reached 150 kHz

X Get/Set transmission Enable on virtual receiver of FDMDUO device Parameters:

*P1(input)
Set 1 2 3 4 5 6 7 8 9 10 Index for channels/data-streams on
T X P1 P2 P3 ; FDMDQO (1 dlglt)..
G 1 2 3 2 5 6 7 3 9 10 Index is coded with 1 char ranges
et from ‘0’ char to channel number-1
T X P1 P2 ; char
Answer 1 2 3 4 5 6 7 8 9 10 *P2(input)
T X P1 P2 P3 ; Index for virtual receiver on

FDMDUO (1 digit)

Index is coded with 1 char ranges
from ‘0’ char to maximum virtual
receiver number-1 char

*P3(input/output)

Transmission state on selected
virtual receiver. It is coded with 1
char equals to ‘1’ to enable
transmission, ‘0’ to disable
transmission.

This command is available only for FDMDUO devices.

TX-set command enables or disables the transmission of a selected virtual receiver on a specified
data-stream. TX-get command obtains if a selected virtual receiver is in transmission or not. The
maximum virtual receiver number is 4 for each data channel, then receiver index ranges from 0 to 3.
This command acts as TX button for each virtual receiver in FDMSW?2 user interface (Note: to see TX
button on user interface, each receiver must be on or active).

TX set-command also changes receiver state: it puts the selected virtual receiver as active to enable
or disable transmission.

Examples for ‘Set’

Example: Enable transmission on second virtual receiver of the first channel on FDMDUO
configuration at 192kHz with two channels or data-streams. Suppose that the active receiver is the
first one in the first data stream and the others are off.

To know receivers’ state, use SR command:
1. First channel, first virtual receiver:
Get-string to server TCP: “SR00;”
Answer-string from server TCP: “SR002;”=> ‘2’ value means the receiver 1 is on and active
2. First channel, second virtual receiver:
Get-string to server TCP: “SROA;”

Answer-string from server TCP: “SRO10;”=> ‘0’ value means the receiver 2 is off

3. First channel, third virtual receiver:

Get-string to server TCP: “SR02;”

Answer-string from server TCP: “SR020;"”=> ‘0’ value means the receiver 3 is off
4. First channel, fourth virtual receiver:

Get-string to server TCP: “SR08;”

Answer-string from server TCP: “SR030;"”=> ‘0’ value means the receiver 4 is off

Now enable the transmission on first channel, second virtual receiver:
Set-string to server TCP: “TX011;”=>‘1" value means receiver will be set totransmission
Answer-string from server TCP: “TX0[1;”
To know modified receivers’ state, use SR command:

1. First channel, first virtual receiver:

Get-string to server TCP: “SR00;”

Answer-string from server TCP: “SR001;”=> ‘1’ value means the receiver 1 is on
2. First channel, second virtual receiver:

Get-string to server TCP: “SROQ;”

Answer-string from server TCP: “SR012;”=> ‘2’ value means the receiver 2 is on and active
3. First channel, third virtual receiver:

Get-string to server TCP: “SR02;”

Answer-string from server TCP: “SR020;”=> ‘0’ value means the receiver 3 is off
4. First channel, fourth virtual receiver:

Get-string to server TCP: “SR03;”

Answer-string from server TCP: “SR030;”=> ‘0’ value means the receiver 4 is off

Examples for ‘Get’

Example: Getting if the virtual receivers of the first channel on FDMDUO configuration at 192kHz
with two channels or data-streams are in transmission or not:

1. First channel, first virtual receiver

Get-string to server TCP: “TX00;”

Answer-string from server TCP: “TX000;”
disabled

First channel, second virtual receiver
Get-string to server TCP: “TX04;”

Answer-string from server TCP: “TX0[1;”
enabled

First channel, third virtual receiver
Get-string to server TCP: “TX02;”

Answer-string from server TCP: “TX0R20;"”
disabled

First channel, fourth virtual receiver
Get-string to server TCP: “TX03;”

Answer-string from server TCP: “TX030;”
disabled

=>‘0’ value means that transmission is

=>‘1’" value means that transmission is

=>‘0’ value means that transmission is

=>‘0’ value means that transmission is

MD Get/Set demodulation on active virtual receiver of FDM device

10

P1 P2 P3

Get

10

P1 P2

Answer

10

SRS IR[Z |~
O(N|TO N[O |N
W
N
n
()}

N
[+])
©

P | P2 [P3| ;

Parameters:

*P1(input)

Index for channels/data-streams on
FDM (1 digit).

Index is coded with 1 char ranges
from ‘0’ char to channel number-1
char

*P2(input)

Index for virtual receiver on FDM (1
digit)

Index is coded with 1 char ranges
from ‘0’ char to maximum virtual
receiver number-1 char
*P3(input/output)

Code for demodulation mode on
FDM(1digit).

Demodulation is coded with 1 char:
‘0: CW

‘1": CW SH+

‘2’: CW SH-

‘3’: USB

‘4’: LSB

‘5: AM

‘6’ FM

‘7’: DRM

‘8": WB FM

‘9’: SYNC AM

MD Get/Set demodulation on active virtual receiver of FDM

10

P1 P2 P3 P3

Read

10

P1 P2

RIS R[Z (-
N|ION|O|N
w
N
n
5}

N
*]
©

Answer

10

<
o

P1 P2 P3 P3

Parameters:

*P3(input/output)

Code for demodulation on FDM (2
digits).

Demodulation is coded with 2 chars
“10”: DSB

“11”: RTTY

“12”: RTTY

“13”: CW NW

“14": ECSS

MD command modifies or reads demodulation for the selected and active virtual receiver on a
specified data-stream. The maximum virtual receiver number is 4 for each data channel, then

receiver index ranges from 0 to 3.

MD set-command acts on demodulation only if selected virtual receiver is active; then, before using
this command, get information about the state for the virtual receiver and modify it as active if you

want to change demodulation (see SR command).

Examples for ‘Set’

Example: Setting AM demodulation for active virtual receiver of the first channel on FDM
configuration at 384kHz with two channels or data-streams (suppose the active receiver is the

second one in the first data stream):

First channel, second virtual receiver
Set-string to server TCP: “MDO@5;”
Answer-string from server TCP: “MDO5;” => ‘5’ is AM demodulation

Example: Setting DSB demodulation for active virtual receiver of the second channel on FDM
configuration at 384kHz with two channels or data-streams (suppose the active receiver is the third
one in the second data stream):

Second channel, third virtual receiver
Get-string to server TCP: “MD1210;”

Answer-string from server TCP: “MD1210;” =>“10" is DSB demodulation

Examples for ‘Get’

Example: Getting demodulation for active virtual receiver of the first channel on FDM configuration
at 384kHz with two channels or data-streams (suppose the active receiver is the second one in the
first data stream):

First channel, second virtual receiver
Get-string to server TCP: “MDOZ;”
Answer-string from server TCP: “MDOL5;” => ‘5" is AM demodulation

Example: Getting demodulation for active virtual receiver of the second channel on FDM
configuration at 384kHz with two channels or data-streams (suppose the active receiver is the third
one in the second data stream):

Second channel, third virtual receiver
Get-string to server TCP: “MD12;”

Answer-string from server TCP: “MD1210;” =>“10" is DSB demodulation

sM Get S-meter value on the open virtual receiver of FDM device

Set

Get 1 2 3 4 5 6 7 8 9 10
S M P1 P2 ;

Answer 1 2 3 4 5 6 7 8 9 10
S M P1 P2 P3 P3 P3 P3 ;

Parameters:
*P1(input)
Index for channels/data-streams
on FDM (1 digit).
Index is coded with 1 char ranges
from ‘0’ char to channel number-
1 char
*P2(input)
Index for virtual receiver on FDM
(1 digit)
Index is coded with 1 char ranges
from ‘0’ char to maximum virtual
receiver number-1 char
*P3(output)
S-meter parameter (4 digits)
S-meter parameter is coded with
4 chars:
“0000”: SO

“0002”:S1

“0003”:S2

“0004”:S3

“0005": S4

“0006”: S5

“0008”: S6

“0009”: S7

“0010”: S8

“0011”:S9
“0012”:S9+10

“0014”: S9+20

“0016”: S9+30

“0018”: S9+40

“0020”: S9+50

“0022”: S9+60

SM command reads s-meter value (coded for S-parameter) for the selected or active virtual receiver
on a specified data-stream. The maximum virtual receiver number is 4 for each data channel, then
receiver index ranges from 0 to 3.

SM get-command reads the correct S-meter value only if selected virtual receiver is on (or active);
then, before using this command, get information about the state for the virtual receiver and modify

it as on if you want to read S-meter value (see SR command).

Examples for ‘Get’

Example: Getting S-meter parameter for virtual receiver of the first channel on FDM configuration at
384kHz with two channels or data-streams (suppose the open receiver is the second one in the first

data stream):

First channel, second virtual receiver

Get-string to server TCP: “SMOZ1;”

Answer-string from server TCP: “SMO@0016;”

=>“0012" is S9+30 value

Example: Getting s-meter parameter for virtual receiver of the second channel on FDM configuration
at 384kHz with two channels or data-streams (suppose the open receiver is the third one in the

second data stream):
Second channel, third virtual receiver
Get-string to server TCP: “SM12;”

Answer-string from server TCP: “SM120002;” =>“0002" is S1 value

RX Get S-meter value on the open virtual receiver of FDM device [dBm]
Set
Get 1 2 3 4 5 6 7 8 9 10
R X P1 P2 ;
Answer 1 2 3 4 5 6 7 8 9 10
R X P1 P2 P3s P3i P3i P3i P3. P3f
11 12 13 14 15 16 17 18 19 20
P3f | P3f P3f p3f P3f ;

Parameters:

*P1(input)

Index for channels/data-streams
on FDM (1 digit).

Index is coded with 1 char ranges
from ‘0’ char to channel number-
1 char

*P2(input)

Index for virtual receiver on FDM
(1 digit)

Index is coded with 1 char ranges
from ‘0’ char to maximum virtual
receiver number-1 char

P3 parameter is S-meter
valueexpressed in dBm. P3 is a
float type value coded with 11
digits.

*P3s(output)

Sign of S-meter value.

Sign is coded with 1 char equals
to + or -

*P3i(output)

Integer part of S-meter value (3
digits).

Integer part is coded with 3
chars, one char for each digit of
the integer part of S-meter value.
*P3.(output)

Fractional separator is 1 char
equalsto ‘.’

*P3f(output)

Fractional part of s-meter value
(6 digits).

Fractionalpart is coded with 6
chars,one char for each digit of
the fractional part of s-meter
value.

RX command reads s-meter value in dBm for the selected or active virtual receiver on a specified
data-stream. The maximum virtual receiver number is 4 for each data channel, then receiver index
ranges from 0 to 3.

RX get-command reads the correct S-meter value only if selected virtual receiver is on (or active);
then, before using this command, get information about the state for the virtual receiver and modify

it as on if you want to read S-meter value (see ST command).

Examples for ‘Get’

Example: Getting s-meter parameter for virtual receiver of the first channel on FDM configuration at
384kHz with two channels or data-streams (suppose the open receiver is the second one in the first
data stream):

First channel, second virtual receiver

Get-string to server TCP: “RX0%;”
Answer-string from server TCP: “RX0%-038.880020;"

Example: Getting s-meter parameter for virtual receiver of the second channel on FDM configuration
at 384kHz with two channels or data-streams (suppose the open receiver is the third one in the

second data stream):
Second channel, third virtual receiver
Get-string to server TCP: “RX12;”

Answer-string from server TCP: “RX12-117.885685;”

GS-2 Get 1024 points of frequency spectrum [dBm]
Set
Get 1 2 3 4 5 6 7 | 8 9 10
G S P1 p2="2" |
Answer 1 2 3 4 5 6 7 8 9 10
G S P1 pP2='2" | P3s | P3i | P3i | P3i | P3. p3f
11 12 13 14 15 | 16 | 17 | 18 | 19 20
P3f P3f p3f P3f P3f | P4s | P4i | P4i | P4i P4.
21 22 23 24 25 26
paf paf PAf paf Paf | P4f
x1 x2 x3 x4 x5 X6 | x7 | x8 | x9 (X;U
Pns Pni Pni Pni Pn. | Pnf | Pnf | Pnf | Pnf Pnf
(x+1)1
Pnf
11269

Parameters:

*P1(input)

Index for channels/data-streams on
FDM (1 digit).

Index is coded with 1 char ranges
from ‘0’ char to channel number-1
char

*P2(input)

Fixed to ‘2’, (it doesn’t means
virtual receiver index!)

Pn parameters have n index ranges
from3 a 1026.

Pn is an averaged spectrum point
expressed in dBm. It is a float type
value coded with 11 digits.
*Pns(output)

Sign of spectrum point.

Sign is coded with 1 char equals to
‘+' or ‘-

*Pni(output)

Integer part of spectrum point (3
digits).

Integer part is coded with 3 chars,
one char for each digit of the
integer part of spectrum point.
*Pn.(output)

Fractional separator is 1 char equals
to’’

*Pnf(output)

Fractional part of spectrum point (6
digits).

Fractionalpart is coded with 6
chars,one char for each digit of the
fractional part of spectrum point.

“GS02” command reads 1024 spectrum points in dBm on the first data-stream for the FDM
configuration. Each point is a float type and it is coded with 11 chars (one char for digit). Then the
server answerisa string with four chars for header (“GS02”), plus 1024*11=11264 charsfor spectrum

points and command end char “;”. Total answer length is 11269chars.

To get the spectrum of second data stream (if FDM configuration has more than one data channel),

use “GS12” command.

If second channel is not supported for the selected hardware configuration, the server answer string

is “???”

Examples for ‘Get’

Example: Getting 1024 spectrum point of the first channel on FDM configuration at 384kHz with two

channels or data-streams

Get-string to server TCP: “GS02;”

Answer-string from server TCP: “GS02........ -062.715000-074.800000;” (headerand last two
spectrum points)

Example: Getting 1024 spectrum point of the second channel on FDM configuration at 384kHz with
two channels or data-streams

Get-string to server TCP: “GS12;”

Answer-string from server TCP: “GS12........ -062.715000-074.800000;” (header and last two
spectrum points)

GS-3 Getspectrumconfigurationparameters Parameters:
*P1(input)
Set Index for channels/data-
streams on FDM (1 digit).
Index is coded with 1 char
Get 1 2 3 4 S 6 7 8 9 10 ranges from ‘0’ char to channel
G S P1 p2="3’ ; number-1 char
Answer 1 2 3 4 5 6 7 8 9 10 | *P2(input)
G S P1 | P2=“3" | P3s | P3i | P3i | P3i P3i p3i | Fixed to ‘3, (it doesn’t means
11 12 13 14 15 16 17 18 19 20 | virtual receiver index!)
P3i P3i P3i P3i P3i P4s P4i P4i P4i P4i
21 22 23 24 25 26 27 28 29 30 Pn parameters have n index
Pai_| Pai | P4 | Pai | Pai | P4i | Pos | P5i | P5i | psi | irom3aldteach parameterisa
31 | 32 | 33 34 35 | 36 | 37 | 38 | 39 | 4o | nteger type coded with 11
P5i | P5i | Psi P5i psi | P5i | P5i | Pes | pei | pei | JETS: ,
103 104 !33(output): isspectrum channel
P11l | pi2s | ndex

P4(output): is frequency
sampling [Hz]

105 106 | 107 108 109 110 | 111 112 113 114
P12i P12i | P12i P12i P12i | P12i | P12i | P12i P12i P12i PS(output): is spectrum point
115 116 | 117 118 119 | 120 | 121 | 122 123 124 number

P13s | P13i | P13i | P13i | P13i | P13i | P13i | P13i | P13i | P13i | pg(output): s displayed

125 126 | 127 128 129 | 130 | 131 | 132 133 134 spectrum point number

P13i ; P7(output): is start displayed
spectrum index

P8(output): is stop displayed
spectrum index

P9(output): is central frequency
or local oscillator frequency
[Hz]

P10(output): is start displayed
spectrum frequency [Hz]
P11(output): is stop displayed
spectrum frequency [Hz]
P12(output): reserved for
spectrum offset level, but not
implemented yet

P13(output): point number for
spectrum average.

*Pns(output)

Sign of spectrum parameter.
Sign is coded with 1 char equals
to ‘+' or ‘-

*Pni(output)

Unsigned integer value of
spectrum parameter (10 digits)
Unsigned integer value is coded
with 10 chars, one char for
each digit of the value of
spectrum parameter.

“GS03” command reads 11 spectrum parameters on the first data-stream for the FDM configuration.
Each value is an integer type and it is coded with 11 chars (one char for digit). Then the server
answer is a string with four chars for header (“GS03”), plus 11*11=121 chars for spectrum points and
command end char “;”. Total answer length is 126 chars.

To get the spectrum parameters of second data stream (if FDM configuration has more than one
data channel), use “GS13” command.

If second channel is not supported for the selected hardware configuration, the server answer string
is “?°??”

Examples for ‘Get’

Example: Getting 11 spectrum parameters of the first channel on FDM configuration at 384kHz with
two channels or data-streams

Get-string to server TCP: “GS03;”

Answer stringfrom server TCP:
“GS03+0000000000+0000384000+0000016384+0000001024+0000001638+0000014746+00
01170000-0000076805+0000076805+0000000000+0000000002;”

P3: Data stream/data channel index : +0000000000 => 0
P4: Frequency sampling: +0000384000 =>384kHz
P5: Evaluated spectrum point number: +0000016384=> 16384 points
e Spectrumresolutionis: 384000 / 16384 = 23.4375 Hz
P6: Displayed spectrum point number: +0000001024=> 1024 points
P7: Start displayed spectrum index: +0000001638=> 1638
P8: Stopdisplayed spectrum index: +0000014746=> 14746
P9: Central frequency: +0001170000=> 1.170 MHz
P10: Start displayed spectrum frequency: -0000153609=> -153.609 kHz
P11: Stopdisplayed spectrum frequency: +0000153609=> +153.609 kHz
e Spectrumspanis: +153.609 - (-153.609) =307.218 kHz
e Spectrumbandwitdhis: [+153609 - (-153609)] / 384000 =0.8, 80%
P12: Reserved for spectrum offset level, but not implemented yet: +0000000000 => 0

P13: Point number for evaluating spectrum average: +0000000002 => 2

Example: Getting 11 spectrum parameters of the second channel on FDM configuration at 384kHz
with two channels or data-streams

Get-string to server TCP: “GS13;”

Answer stringfrom server TCP:
“GS13+0000000001+0000384000+0000016384+0000001024+0000001638+0000014746+00
01170000-0000076805+0000076805+0000000000+0000000002;”

P3: Data stream/data channel index : +0000000001 =>1
P4: Frequency sampling: +0000384000 =>384kHz
P5: Evaluated spectrum point number: +0000016384=> 16384 points
e Spectrumresolutionis: 384000 / 16384 = 23.4375 Hz
P6: Displayed spectrum point number: +0000001024=> 1024 points
P7: Start displayed spectrum index: +0000001638=> 1638
P8: Stopdisplayed spectrum index: +0000014746=> 14746
P9: Central frequency: +0014008000=>14.008 MHz
P10: Start displayed spectrum frequency: -0000153609=> -153.609 kHz
P11: Stopdisplayed spectrum frequency: +0000153609=> +153.609 kHz
e Spectrumspanis: +153.609 - (-153.609) =307.218 kHz
e Spectrumbandwitdhis: [+153609 - (-153609)] / 384000 =0.8, 80%
P12: Reserved for spectrum offset level, but not implemented yet: +0000000000 => 0

P13: Point number for evaluating spectrum average: +0000000002 => 2

GS-4 Get 1024 points of frequency spectrum [dBm] converted to short on +/-180 dBm Parameters:

range *P1(input)

Set Index for channels/data-
streams on FDM (1 digit).
Index is coded with 1 char

Get 1 2 3 4 5 6 7 8 9 10 ranges from ‘0’ char to
G S P1 p2="4’ ; channel number-1 char
Answer 1 2 3 4 5 6 7 8 9 10 *_PZ(input) _
G S PL | P2=4 | P3 | P4 PS5 P6 P7 pg | Fixed to ‘4, (it doesn’t
11 12 13 14 15 16 17 18 19 20 means virtual receiver
P9 P10 | P11 | P12 | P13 | P14 | P15 P16 P17 p1g | index!)
x(n+2)
on Pn parameters have n

1026 1027 1028 1029 index from 3 a 1026.

P1024 | P1025 | P1026 ;

*Pn(output):

Averaged spectrum
sample in short type
format.

“GS04” command reads 1024 spectrum points on the first data-stream for the FDM configuration.
Each point is a short type and corresponds to one char. Then the server answer is a string with four
chars for header (“GS04”), plus 1024chars for spectrum points and command end char “;”. Total
answer length is1029chars.

To get the spectrum of second data stream (if FDM configuration has more than one data channel),
use “GS14” command.

If second channel is not supported for the selected hardware configuration, the server answer string
is “???”

Notice that each char is two bytes long because one char is the spectrum point in short format
without any type of coding. In Figure 6 there is an example of spectrum reception with Hercules
client: the client sends a get command to TCP server (in Figure 6 the command is green-marked) and
the data answerfrom server is a string where the header “GS04” and the end “;” are in chars format
and the 1024 spectrum points are in short format (in Figure 6 header string and end char are blue-
marked).If the client is set to receive data in byte, there are 8 bytes for header, 2048 bytes for
spectrum points and 2 bytes for end char. The client must code header and end char as strings, and
for each spectrum point the operations listed below must be done:

1. Declare b_value variable as a two byte array and fill with bytes of a single spectrum point.
2. Convert the array in a short type variable:

value = BitConverter.ToIntl6(b_value, sizeof(short));

3. Convert in dBm value:

value_dBm = offset_dBm+ (Convert.ToDouble(value) / (Math.Pow(2.0,15.0)))*(180.0);

The variable offset_dB is filled with the value obtained from decoding P12 parameter in the answer
of “GS03;” command (decoding for P12 parameter is not specified because it is not implemented

yet).

@ Hercules SETUP utility by HW-group.com

"UDP Setup | Serisl TCP Client | TCP Server | UDP | TestMode | About |
Received/Sent data

g to 127

ected to 127 0.0,

Send

4 5 s} 4 |x"§: &z sL¥zZ¥P 4 T Yuzp 6 0z; ¥ A -z~ i\ (0]
< Z LZ'Z T 2%, 1 ze3h;t sze¥N m¥hz, YsiF afe o¥ ¥,¥Ez 2 [zv¥U
¥k A¥L T¥; DY 202 O m¥»¥% 0 u .Ei:Q¥™ 43" A0 g K 3 O 022628 % ~ :¥v; z ¥
a¥#¥5 &4 iz < s¥o¥e¥e ~ [B¥-20¥«20¥7 de O a¥0T\2072;4e ;IzaV-¥OYEYS
¥ 2> @¥pzz¥Az-sNzn¥-2! O " BYK «¥* < 1 = 9% ¥E 5 v ™ —)zhzwW AY
3 ¥6 o%c;s¥P; 39¥/36 YA E O¥a% EV Y3/ /¥=3F # Lip¥s¥e=: i
g4 = g¥E ¥93¥ 2 w¥ 28 O¥~% ¥ 3¥GE ®E &:.. Y N s¥éisie; i b
»iu¥s¥= Hizzs —Voz/¥izl;- ,z ¥R i1E0 YU +¥z2% i ¥ i¥+ 46z Y2 EXi 8 §
i ¥z ¥QEniRz6YSYY L2izp ¥ £ "5° ° ¢E & , ~;7 .i*39 = ,E{¥" (¥E;
¥Y¥E A 1; Fuza¥ ¥Uvr ; a¥MYs oix 92 u . Yi¥¥= o+ v on G¥E¥=si # & 1:R¥z¥Aza¥
a¥d¥i , ;e¥iz\ pi™jg «¥ Zy¥n; s §¥a¥ & ;OY0 mi};® S;@Y(2C N 9;m;j A
Fil z £ ®YO¥L v «;E¥AY ol fe¢ iG i fjleletjoiFi* BimeT;I 95,
EIjwet #i i:¢i iBedisjxeLiLhise ¢ija¢EL iBelj™edige3; [¢X£0; HEL ¢
v vi- Z ¢PYEY=x & HreRchAerLdb@e T LELpEYETYERAE ¥, Enl O gbUn £ -£Q¢1; ceLh¥—
HiEAC JVETLEETRTL Y " LAYSLINSY " uNEDLER £UmaE) £°F £ (ELLern3nzL0Escul HXHL]
(= (¥ELBE mifsm LE¥ -¢pENEHECHEA L £8¢ £ ¢z HEE gL EENLICSEEL LA ¥Fijn'n
¥o¥zndnin] ¥mde £ mvii¥Hnd;s¥ ¥5¢F ;' LoLELcedn0L - LCHALWE LI e=LARVEELD; ~ede
fun ® o FranieC i Nuded mitiedn—LLRE] [WE<eBndewn ¢ InQ; AL5; wEOLbE e8;8 "¢b
LO¥EY & cEe (;F; - B;j{FF} ';# b re.; ¢ et;" 15 23 ch¥, 3e7en ¥
£58;5;0%¢5 § * (¥ ¥9¢xi”e¢d pi™ i ¥ Ji—e3 5 0 +;0¥ 1eMes i¥ e 1; " Lj
5 0;, +¥% re i I ¢ ¥ s I e¥a;00z i 3 =jmj ¥
¢¥zmEa 3 Se Yo¥y¥ 1] Q; ¥- a¥TYc¥2 0 ¥azp ¢ i sz ¥ iBEE X ¢Y¥ ErY
5;E% id¥f¥zEg _eeu¥y¥-¥% 5 & #2z~ XY ~Z¥EZ; ¥r ! HYXziz~¥
zz138 8 x Iz vzi i¥¥ & |zEza¥ gofuz-jee « ¥ B Vi3E3nigzazRzés— 3E3
i ¥ o= EyETT4#VReny> qz0ze¥-e 1; ¥+ Ezez°¥u¥L vz ¥!
c¥n i¥xz0¥ &Y k¥sz8Y 31 UYEYO [e72zW;x¥1zhz\ = 2dz
i ¥ HE=%:%2%= i AV¥0G%4 B k :j ¥D; GEC € Hz<¥a ~2R »3R “ceiZez ¥
2¥az+zi¥y SYovezs¥=zi3=3138¥iz;¥) - ¥ /¥t X Dz 2i.22 %1%, zieszwisy iTi
<FzEfEx¥vE i% ¥ BEDY¥EZ~¥] * @z~V¥yit swdiy Nz ¥V H Uzc¥x A¥-3e ., Kix 0= i
t E¥E¥&¥o s¥mz FY243F ¥¥6 B ax sz z Frirza 1¥ Feme 352d

[~ Redirect to UDP

et [HEX Send Hlllgroup
| [HEX Send || _tww-HU-groupcom
| [T HE¥ Send VYersion 3.2.8

TCP

127.001 (EEE

Fing | X Disconnect |

TEA autharizatior
TEA key

1001020304 3 |090A0BOC
2:|05060708 4 |ODOEOF10

Authorization code

8l

PartStore test
[~ MYT dizable

Fieceived test data |

Hercules SETUP atilivy

Figure6: Example of spectrum reception with client Hercules on first data channel.

Examples for ‘Get’

Example: Getting 1024 spectrum point of the first channel on FDM configuration at 384kHz with two

channels or data-streams

Get-string to server TCP: “GS04;”

Answer-string from server TCP: “GS04.........cccocveeevcuereeeereernne, .;” (see Figure 6)

Example: Getting 1024 spectrum point of the second channel on FDM configuration at 384kHz with

two channels or data-streams

Get-string to server TCP: “GS14;”

Answer-string from server TCP: “GS14........ccccoveeiveiereveereee. ;" (see Figure 7)

% Hercules SETUP utility by HW-group.com EI
"UDP Setup | Serial TCP Client | TCP Server | UDP | TestMode | About |
Received/Sent data

—TCP
Connecting to 127.0.0.1
Connected to 127.0.0.1 Mool ot
|s 14; 5{00}1{00}4 mepnyng 034 MY 0 ¥TElxhzq¥i¥iee:c:r - oz 303 127.001 f18a3
YRYPE ot —Tez ¥ {¥0 E ¥ ¥¥:¥ Fd's Az & B Ezvil Uz« 0VaYeYEYUZTZ4 :
° 2¥n¥a¥iy 5% 3 2{3U¥°YwY¥o¥h¥p $3=36 % Vs 2 YY0 S Fing | X Discomect|
Q26 Fu¥ z Zm 31 o u¥bizxi® e¥3 im i DR I Azs¥- m¥azE:z ¥
z z ¥av¥a¥s 1¥v;|; ¥1ize- o¥ iEivE Y@ A o# 2= Lz 2EVE inZ(zo TEA authorizatio
¥— °¥p¥e @;pz+¥] ~VkiC;= & a¥" I¥Q;s t¥= Te*zi¥ezd £ Eu i eb¥sih 5 TEA ket
D —¥s5z°¥h 3¥ ki@;2 $2i¥zz\¥ B _bzUB 3%RY Th &Y) ¥O¥ z Yh;.. E 1:|D10203D4 3:|DSDADBDE
2631 E2Y-¥ Taz/ V0¥, ¥I ez (30 £Y'3:-2[20 Uzg a¥ Ye¥ ¥x ¥ & % p¥g¥- +;B;=
cER¥R = = $3¥Visk 3;w¥SEVEPYE =¥o T (YAZ=¥I¥Q; juzhd Ye¥ i2EvE 21|DEDE;D?DB ‘tlnDDEDFm
3 -8 W #V]zviaz-YDYEY; ;@ B vEi¥:¥O i I - &iUY'Y] T gz &a WEj2 ¥ ¢ 4;
i i M eiXE j'E7it B 9¢ 4 YyiﬁY_i‘I iEi sE[T.E; = Ya¥h +¥n¥ w¥ | Authorization code
¥ ¥5;-¥;E¥4;F; Y Y0 & [- E¥z¥Renie , P oo 3;¥ 6V ; ¢¥YET ReC;IEELZiE;TIidi. &; | %l
¥ie aiHelNje¥s & _ Yellje+;He £ & & &; ERE™ET; 1 1 EneBe¥ene ife
ed; ¢ £°g fecAnTed ; 5, ¢OenuoL™; Hnfaeniin £Z¢ -1 ng¥acpudcée
£21Z¢€epthe TuPeleOnyed;i; wfETednas H EX¢ARnE¥ILan | H¥ L]¥-¥ HC¥
Hi¥=¥) Soné¥Ong¥L¥T | CSG) "¥ SEY HELfRnkrELgL e mGEICqge £Dj<ifiRe ¢ £UYEEd
LOLRE ¢m; E—eXj Ere*ezeji] {£/E,;:E¥eCe cheTerL¥; S Hof-£ tEeSe ¢35 ge
AefeamcE+EMeT; 4¢ ¢{FF} it~faclcE;<L iidi% 6YELE ¢g £¥eEL i £2;1
senjU¥E o »ja¥eivigi1iDi i—iEjR;5¥r; &z eT % &; ;07 ev {ekh; ewj

) +igikE-g SR jedm FUe™ & ¥I;d 2;» 1% ¢ B F BT o+ 4E¥s £
THsi= Fri1¥- -e{FFITW Q;% ¥- z; ¥y ex¥ e5Y¥ i¥ ¥ z°
°z{¥X r p¥ie ¥ Y490z 05~ Efa;q 207 Ex¥ & azwizg= "¥P¥-¥ ;8 = &¥ ¢
it = v¥ zt¥e Ejvi ¢ iz b'd) .z A ¢ izd GYI¥I;P H3~ &Y
w e¥8 CYO¥] o E ozc¥i¥ zx¥ a¥az ek e\Fuzi az\ OY x¥V IZF OVeeljle >
izfiz= ~ ez n¥ z 3R +¥&¥7T & ¥ Tg; 67 ¥ 5GiCEYI\Y
N¥O¥xY¥d EY v Uzaz-zo¥i wc¥v ,¥S z28Y._ ¥c¥e¥ FrE¥YY0 » xYAZ eHYR L &>
- A%+ ¥1 1 gi:3C2Z & \2a Az|¥°Y 1§¥p YVIV v o+ 2 v eOVeV-E, 15/ Y-
¥ u] \¥B MY-¥ez Az Yoz ¥ Y5z, ¥z wY YO¥yEasp ¥ EG;RY¥YA i¥2 » PortStore test
X I]__H?-%ii 0 %ﬁY}i 1 ?zY(__ﬁ%HY YH%?%“%WY"Y&Y a ._f‘_l t ¥iy A %]’3?8““ 2% b —¥ [~ WT disable
T Theef RjYZ»zUZ= YZ4TuZFY-zh»~ YO € f¥e¥; =i'z Tz\YI¥n _Ze §
¥vee Y0¥, ¥h +efl CEZgieZs §¥s : Received test data |
|

I~ Redirect to UIDP
— Send

. I
”GSM,i [~ HEX Send | ngrnup
I I— HE Sand | vruw.HW-group.com

Hercules SETUP wtility

I [” HEX Send | Version 3.2.8

Figure 7 Example of spectrum reception with client Hercules on second data channel.

Specification for the correct FDM tuning

It is strongly recommended to set all virtual receiver into unlocked state or locked to absolute
frequency state before changing FDM local oscillator frequency or virtual receiver tuning frequency.

In order to do this, follow the operations listed below:

1. Activate virtual receiver 1 and put it into unlocked/locked to absolute frequency state
a. Send “SR001;” => receiver 1 is active
b. Send “LFO00;” => receiver 1 is unlocked
c. Send “LF002;” => receiver 1 is locked to absolute frequency
2. Activate virtual receiver 2 and put it into unlocked/locked to absolute frequency state
a. Send “SR011;” => receiver 2 is active
b. Send “LF010;” => receiver 2 is unlocked
c. Send “LF012;” => receiver 2 is locked to absolute frequency
3. Activate virtual receiver 3 and put it into unlocked/locked to absolute frequency state
a. Send “SR021;” => receiver 3 is active
b. Send “LF020;” => receiver 3 is unlocked
c. Send “LF022;” => receiver 3 is locked to absolute frequency
4. Activate virtual receiver 4 and put it into unlocked/locked to absolute frequency state
a. Send “SR031;” =>receiver 4 is active
b. Send “LF030;” =>receiver 4is unlocked
c. Send “LF032;” => receiver 4 is locked to absolute frequency
5. Set local oscillator frequency to the desired central frequency (for example 14008000 Hz)
a. Send “CF0000014008000;”
6. Get start and stop spectrum frequencies
a. Send “GS03;” => P10 parameter is start frequency and P11 parameter is stop
frequency; for example, if the 384kHz configuration is set, start frequency is -
153609 Hz and stop frequency is 153609 Hz.
7. Tune virtual receivers in the range of (central frequency + start frequency) to (central
frequency + stop frequency) only if receivers are in unlocked state.
a. Send “FX0000014048000;” => receiver 1 is tuned at 14.048MHz
b. Send “FX0100014088000;” => receiver 2 is tuned at 14.088MHz
c. Send “FX0200013988000;” => receiver 2 is tuned at 13.988MHz
d. Send “FX0300013948000;” => receiver 3 is tuned at 13.948MHz
If receivers are locked to absolute frequency,tuning can be done out of spectrum start and
stop frequency limits (there is no need of point 6) .

RC Get/Set recording on first channel/data stream of FDM device
Set 1 2 3 4 5 6 7 8 9 10
R C P1 P2 P3 P4 P5 P6 P7 P8
11 12 13 14 15 16 17 18 19 20
P9 P10 P11 P12 P13 P14 P15 P16 P17 P18
n+2
Pn
68 69 70
P66 P67 ;
Get 1 2 3 4 5 6 7 8 9 10
R C P1 P2 ;
Answer | 1 2 3 4 5 6 | 7 8 9 10
R C P1 P2 P3 ;

Parameters:

*P1(input)

Index for channels/data-
streams on FDM (1 digit).
It fixed to ‘0’ to means
first channel

*P2(input)

Fixed to ‘0’, unused to set
virtual receiver

Pn parameters have n
index from 3 to67.

*P3(Input/output):
Recording state on first
channel/data-stream. It is
coded with 1 char equals
to ‘1’ to means recording
is on, ‘0 to means
recording is off.

*P4 to*P67(Input):

Name of file to record
data; it must be until 64-
char long

RC-set command starts and stops recording on first channel/data stream of FDM device, with P1

parameter fixed to ‘0’ char.

P3 parameter is ‘1’ to start recording, ‘0’ to stop recording

P4 to P67 is recording file name without “.wav’ file termination (FDMSW2 automatically

includes recording file number and ‘.wav’ termination). File name must be at least 1 char

long and it must not exceed 64 chars.

RC-get command reads recording state on first channel/data stream of FDM device with P1

parameter fixed to ‘0’ char.

P3 parameter is ‘1’ when a recording is on, ‘0’ if there is no recording

Virtual receiver index parameter (P2) is not used and it is fixed to ‘0’ char.

To know recording settings see the last configuration on FDMSW?2: click on “SET”button to open

“Setup” panel and select “Recording” tab.Or execute right click on rec-button to open “REC Options”

panel on main form.

Examples for ‘Set’

Example: Start recording on first channel

Set-string to server TCP: “RCOQ1test;”=> recording starts on ‘test_000.wav’ file

Answer-string from server TCP: “RC001;”

Examples for ‘Get’

Example: Recording state on first channel
Get-string to server TCP: “RC00;”
Answer-string from server TCP: “RC001;” => there is a recording

Examples for ‘Set’

Example: Stop recording on first channel
Set-string to server TCP: “RC000test;” => recording stops on ‘test_xyz.waV’ file
Answer-string from server TCP: “RC000;”

Examples for ‘Get’

Example: Recording state on first channel
Get-string to server TCP: “RC00;”
Answer-string from server TCP: “RC0Q0;” => there is no recording

Default path to save .wauv file is set in the last recording configurations.

ST Get device info
Get 1 2 3 4 5 6 7 8 9 10
S T P1 P2 ;
Answer 1 2 3 4 5 6 7 8 9 10
S T P1 pP2="0’ P3 P3 P3 P3 ;
Answer 1 2 3 4 5 6 7 8 9 10
s T P1 P2=1" | P3 | P3 | P3 P3 P3
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
35 36 37
P3 P3 ;
Answer 1 2 3 4 5 6 7 8 9 10
T P1 pP2="2’ P3 P3 P3 P3 P3
11 12 13 14 15 16 17 18 19 20
P3
21 22 23 24 25 26 27 28 29 30
35 36 37
P3 P3 ;

Parameters:

*P1(input)

Not used. Forced to 0 in
Answer.

*P2(input)

Sub command:

‘0": get PID info

‘1’: get SN info

‘2’: get Device name

*P3 (output):

PID device information if
sub-command is ‘0. It is
coded with 4chars equals
to PID value in
hexadecimal.

*P3 (output):

SN device information if
sub-command is ‘1’. It is
coded with 32chars
equals to SN string

*P3 (output):

Device Name information
if sub-command is ‘2’. It is
coded with 32chars
equals to device name
string

ST-get command retrieves information about device hw connected to the software. In this command

P1 parameter is not used, P2 parameter is used to get different information:

e P2="0"get PID of the device connected
e P2 ="1 get SN of the device connected
e P2="2" get the device name.

Examples

Example: get PID value

Get-string to server TCP: “ST00;”

Answer-string from server TCP: “STOR061C;”>PID

Example: get SN string

Get-string to server TCP: “STO&;”

0x061C means FDM-S2 Device

Answer-string from server TCP: “STOZ000000000000000000000SE033B_0012;"> SN:

SE033B_0012

Example: get name string

Get-string to server TCP: “ST02;”

Answer-string from server TCP: “ST0200000000000000000000000000FDM-S2;”=> name:
FDM-S2

MS (Memories Set) command have 3 parameters:

P1is the index of channels datastream on FDM (1 digit)

P2 is the sub-command (1 digit)

P3 is a parameter for the sub-command (5 digit)

Is possible to add max 60 memories with a command and this memories is memorized with

a list number (from 1 to 99999).

Parameter P2 meaning: ‘0’ is Get memories command , ‘1’ is Delete memories command, ‘2’

is Add memories command.

Get and Delete command can operate with list memories. Get and Add memories operate

with max 60 memories in a single TCP command.

MS Get memories

Get 1 2 3 4 5 6 7 8 9 10
M S P1 P2 P3 P3 | P3 P3 P3 P4
11 12 13 14 15 16 | 17 18 19 20
P4 P4 P4 P5 P5 PS | P5 ;

Answer | 1 2 3 4 5 6 7 8 9 10
M P1 P2 P3 P3 | P3 P3 P3 P4

P5 P6 P7 P7 | P7 P7

Parameters:

*P1(input)

Index for channels/data-
streams on FDM (1 digit).
It fixed to ‘0’ to means
first channel

*P2(input) Sub command:
0: get command

1: delete command

2: add command

*P3 (input)

If ‘00000’ and P4,P5 not
inserted = give number
of memories;

If ‘00000’ and P4,P5
inserted - give memories
from start to stop index;

If ‘xxxxx’ > give
memories from ‘xxxxx’
list;

*P4 (input) only if P3=0,
means start index of get
memories
*P5 (input) only if P3=0,
means stop index of get
memories

*P3(output) number of
memories

*P4(output) 11 digit
Frequency

*P5(output) 16 digit label
memories

*P6(output) 1 digit mode
*P7(output) 5 digit list

MS get command: P2= ‘0’

If input P3 = ‘00000’ and P4(input) and P5(input) not inserted in command-> get the
number of memories (parameter P4 and P5 output not inserted in the answer)

Es. MS0000000;MS0000009; = 9 memories present

If input P3 = ‘00000’ and P4(input) and P5(input) inserted in command—> get the number of
memories from P4 to P5. If Nmax is the number of memories present, then P5 can assume
the maximum value in Nmax — 1. If P4 = P5 a single memories in returned.

Es. MS000000000020003;

MS0000002

000003670000000ZAG ZagabriaX0000

000003690000000000VRS VrsarX0000; > get 2 memories from index 2 to index 3

If input P3 = ‘xxxxx’ P4(input) and P5(input) inserted or not in command > get memories of
list “xxxxx’

Es. MsS0000001; or MS000000100020003;

MS0000003

000000670000000ZAG ZagabriaX0001

000001080000000CHI ChioggiaX0001

0000011700000000VCA VicenzaX0001;> 3 memories present in list number 1

MS Delete memories Parameters:

Delete 1 2 3 4 5 6 7 8 9 10 | *Pi(input)
Index for channels/data-

M S P1 P2 P3 P3 | P3 P3 P3 P4 | streams on FDM (1 digit).
11 12 13 14 15 16 17 18 19 20 It fixed to ‘0’ to means
Pa | Pa P4 PS5 ps | ps | ps ; first channel
Anewer P B 3 2 B . 5 s 5 0 *P2(input) Sub command:
0: get command
M S P1 P2 P3 P3 P3 P3 P3 ; 1: delete command
2: add command
*P3 (input)

If ‘00000’ and P4,P5 not
inserted - delete all
memories;

If ‘00000’ and P4,P5
inserted

- delete memories from
start index P4 to stop
index P5;

If ‘xxxxx” = delete list
XXXXX;

*P4 (input) only if P3=0,
means start index of

delete memories

*P5 (input) only if P3=0,
means stop index of
delete memories

*P3(output) answer give
number of memories
deleted

MS delete command: P2= ‘1’

If input P3 = ‘00000’ and P4(input) and P5(input) not inserted in command - delete all
memories

Es. MS0100000;MS0100009; - Deleted 9 memories

If input P3 = ‘00000’ and P4(input) and P5(input) inserted in command —> delete memories
from P4 to P5 index. If Nmax is the number of memories present, then P5 can assume the
maximum value in Nmax — 1. If P4 = P5 a single memories in deleted.

Es. MS010000000040006;MS0100003; = Deleted memories from index 4 to index

6 (3 memories)

If input P3 = ‘xxxxx’ and P4(input) and P5(input) inserted or not in command - delete P3 list
memories

Es. MS0100001; or MS010000100020008; MS0100003; => Delete 3 memories of list

1
MS Add memories Parameters:
Add 1 2 3 4 5 6 7 8 9 10 | *Pi(input)
Index for channels/data-
M S P1 P2 P3 P3 | P3 P3 P3 P4 | streams on FOM (1 digit).
11 12 13 14 15 16 17 18 19 20 It fixed to ‘0’ to means
P4 | Pa P4 | P4 P4 | P4 | Pa P4 P4 p4 | firstchannel
21 | 22 | 23 24 25 | 26 | 27 | 28 29 30 | *P2(input) Sub command:
P5 | P5 | P5 P5 P5 | P5 | P5 | P5 P5 ps | 0:getcommand
31 32 33 34 35 36 37 1: delete command
2: add command
P5 P5 P5 P5 P5 Ps | P6 ; *p3 (input)
Answer 1 2 3 4 5 6 7 8 9 10 Number of memories to
M S P1 P2 P3 | P3 | P3 | P3 P4 py | add

) *P4 (input) 11 digit Freq
d *P5 (input) 16 digit Label
*P6 (input) 1 digit mode

*P3(output) answer give
number of memories
added

*P4(output) answer give
number of list associated

MS add command: P2= ‘2’

Command can add max 60 memories, the answer give the number of memories added on
P3 (if a memory already exist this memory is not inserted) and the number of list associated
on P4.

Es.

MS0200002

000002670000000ZAG ZagabriaX

000003690000000000VRS VrsarX;MS020000200001;added 2 memories on list 1

Note. The Code for demodulation mode on FDM (1 digit) is:
‘0:CW

‘1’: CW SH+
2’: CW SH-
‘3’: USB

‘4’ LSB

‘5: AM

‘6: FM

‘7’: DRM

‘8’: WB FM
‘9’: SYNC AM
‘X’: not used

