
Giovanni Franza

Studente/i

Master of Science in Informatics

Corso di laurea Modulo / Codice Progetto

Tesi

Relatore

Tiziano Leidi

Committente

Anno

2016

Correlatore

Loris Grossi

05/09/2017

Data

Software Defined Radio with Remote Head Software Defined Radio with Remote Head
and Internet Clientsand Internet Clients

19/09/2016 Software Defined Radio with remote head and Internet clients 2

Agenda
● Idea

– Challenges / Framework

● Development
– Tools / Devices /

Computers /Software

● Technologies
– USB / UDP / Websocket /

Graphic & Audio context /
DSP elaboration

● Demo
● Measures
● From Here

19/09/2016 Software Defined Radio with remote head and Internet clients 3

Idea
Is a crowded
town the best
position for a
radio receiver ?

19/09/2016 Software Defined Radio with remote head and Internet clients 4

Challenges - UI
Can a SDR have the
same UI of a normal
Radio receiver ?

19/09/2016 Software Defined Radio with remote head and Internet clients 5

Challenge - OS

Can a non native
RT system host a
SDR program ?

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Elapsed time (ms)

S
ig

na
l P

ro
ce

ss
in

g
tim

e
(m

s)

0 10 20 30 40 50 60 70 80 90 100
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Sample

F
F

T
C

om
pu

ta
tio

n
tim

e
(m

s)

19/09/2016 Software Defined Radio with remote head and Internet clients 6

Framework
● Sampler: together with an embedded on the top of a hill

● Server: a PC in a webfarm nearby

● Clients: a browser anywhere

Sampler

Embedded

Server

Client

Client

Client

internet

19/09/2016 Software Defined Radio with remote head and Internet clients 7

Development
● Hardware: COTS components off the shelf

– Samplers

– Embedded

– PC

● Development: Spiral model

● Software: KISS keep it simple and stupid

19/09/2016 Software Defined Radio with remote head and Internet clients 8

Devices
● Philosophy: COTS (components off the

shelf)

● At the beginning very cheap RTL
dongles

– Tested with GNU Radio

● Then, thanks to an agreement with
ELAD, much better and documented
samplers S1 and S2

– First, developed GNU Radio drivers

– Then USB→UDP tunnelling program

19/09/2016 Software Defined Radio with remote head and Internet clients 9

Tools
GNU Radio as
a reference
and a test bed

19/09/2016 Software Defined Radio with remote head and Internet clients 10

Computers
Also here, COTS

Raspberry PI 2 as
embedded that hosts
USB→UDP bridge

Computer with I7 Intel
hyperthreaded quad core
CPU as “server”

19/09/2016 Software Defined Radio with remote head and Internet clients 11

Software

Wait condition

Compute LO

Mixer

Fire HF FFT

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Fire MF FFT

Fire audio FFT

Wait condition

Compute LO

Mixer

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Wait HF FFT

compute FFT

Fire HF FFTFire HF FFT

Wait HF FFT

compute FFT

Wait HF FFT

compute FFT

Mixer

Compute BFO lr

Send audio frame

Send HF FFT frame

Send MF FFT frame

Send HF FFT frame

Thread A Thread C Thread B

EmbeddedEmbedded

 Receiver Server Clients

Client
Manager

19/09/2016 Software Defined Radio with remote head and Internet clients 12

First phase

Embedded

● Before any work an RTL-SDR test was
done using GNURadio

– To verify RTL-SDR usability

● Before testing GNURadio was studied

– To be able to use it correctly

● Some flowgraphs were developed

– They resulted useful to test RTL-
SDR

● RTL-SDR discarded in favor of ELAD
samplers

– Development of modules useful for
project (callbacks structure reused)

19/09/2016 Software Defined Radio with remote head and Internet clients 13

Embedded

Embedded

● USB initialization (device dependent)

– For some devices also FPGA
setup

● Data transfer via callback

– To avoid data loss callbacks and
USB data transfer overlaps

● Network data flow via UDP

– No data loss, verified

● Commands received and confirmed
using TCP

– To exploit its characteristics.

19/09/2016 Software Defined Radio with remote head and Internet clients 14

Receiver
● It receives UDP packets

● It fills shared memories

– Two banks, with associated events

– To allow clients to work on a bank at a time

● It talks with Manager (web application)

– Via Websocket

● It computes FFT

– To allow manager to draw spectrogram and
waterfall

19/09/2016 Software Defined Radio with remote head and Internet clients 15

Manager

Embedded

● Web worker to escape javascript
monothreading

– Events/messages bwtween worker and
main thread

● Graphic context to design graphic elements

– Layered graphics to reduce computation
load

● Websocket communications

19/09/2016 Software Defined Radio with remote head and Internet clients 16

Client

Wait condition

Compute LO

Mixer

Fire HF FFT

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Fire MF FFT

Fire audio FFT

Wait condition

Compute LO

Mixer

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Wait HF FFT

compute FFT

Fire HF FFTFire HF FFT

Wait HF FFT

compute FFT

Wait HF FFT

compute FFT

Mixer

Compute BFO lr

Send audio frame

Send HF FFT frame

Send MF FFT frame

Send HF FFT frame

Thread A Thread C Thread B
● One client for each external request

– Developed as TCP server daemon

● Two threads to manage data processing

– All “normal superhet” processing: VFO,
mixer, MF filtering, BFO, audio

● One thread to manage FFT

– Periodically computed at three different
levels: input, intermediate, audio

● One thread to manage Websocket

19/09/2016 Software Defined Radio with remote head and Internet clients 17

Data processing
● VFO / mixer to center to 0Hz the wanted band

● Antialiasing filter and decimation to spread the band and make
“downsampling gain”

● BFO / mixer to center to 0Hz the middle of wanted baseband

● Filtering and decimation to fit to a reasonable sampling rate

● BFO / mixer to move filtered band to baseband

● Classic FIR / IIR

● Classic “prostapheresis” mixer

19/09/2016 Software Defined Radio with remote head and Internet clients 18

Web client
● Webworker that manages Websocket

– Uses messages to talk to main thread

● Graphic context that draws spectrograms

● Audio context that plays audio

– After offline audio context sound
conversion

● Offline audio context

19/09/2016 Software Defined Radio with remote head and Internet clients 19

Demo
Client

19/09/2016 Software Defined Radio with remote head and Internet clients 20

Measures
50Mb/s on bridge

1Mb/s each client

4 simultaneous clients
0 10 20 30 40 50 60 70 80 90 100

Sample

F
F

T
C

om
pu

ta
tio

n
tim

e
(m

s)

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Elapsed time (ms)

S
ig

na
l P

ro
ce

ss
in

g
tim

e
(m

s)

19/09/2016 Software Defined Radio with remote head and Internet clients 21

From here
● Change UDP data stream format

● Change Audio format (codec)

● CIC filters for decimator

● FFT filters for Bandwidth

● Other modulations

● AGC, Volume control

Giovanni Franza

Studente/i

Master of Science in Informatics

Corso di laurea Modulo / Codice Progetto

Tesi

Relatore

Tiziano Leidi

Committente

Anno

2016

Correlatore

Loris Grossi

05/09/2017

Data

Software Defined Radio with Remote Head Software Defined Radio with Remote Head
and Internet Clientsand Internet Clients

19/09/2016 Software Defined Radio with remote head and Internet clients 2

Agenda
● Idea

– Challenges / Framework

● Development
– Tools / Devices /

Computers /Software

● Technologies
– USB / UDP / Websocket /

Graphic & Audio context /
DSP elaboration

● Demo
● Measures
● From Here

Why I do this project

How I developed it

Which are the results

What I plan to do after it

19/09/2016 Software Defined Radio with remote head and Internet clients 3

Idea
Is a crowded
town the best
position for a
radio receiver ?

Old good times, when cities were electrically silent,
are gone, a lot of noise is generated by any sort of
appliances.

“Normal” people fears antennas, ORNI + building
regulations could make antennas installation a
nightmare.

Even when on holidays, in a distant location, an OM
wishes to use his/her radio without issues related to
customs.

The solution can be remotization.

19/09/2016 Software Defined Radio with remote head and Internet clients 4

Challenges - UI
Can a SDR have the
same UI of a normal
Radio receiver ?

There are challenges in the development of such an
idea.

One aspect of the challenge is to build something
substancially new, not simply a copy of the front
panel of a good old radio.

SDR, with FFT, changes the scenario of a radio
receiver: no more “blind tuning” but “click and
point”.

Don’t throw the child with the dirty water: a sort of
“knob” is really useful also because OMs are used
to tune “rotating their wrist”.

UI based on web browser, to exploit their ubiquity.

19/09/2016 Software Defined Radio with remote head and Internet clients 5

Challenge - OS

Can a non native
RT system host a
SDR program ?

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Elapsed time (ms)

S
ig

n
al

 P
ro

ce
ss

in
g

tim
e

 (
m

s)

0 10 20 30 40 50 60 70 80 90 100
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Sample

F
F

T
 C

om
pu

ta
tio

n
 ti

m
e

 (
m

s)

I’m a “linux addicted”, but Linux is not completely RT:
is it possible to use it for SDR?

How much other parts of OS can interfere with
operations?

From the measurements we see that there are
glitches, but we could limit their effects.

Another challenge is the SDR itself, the conversion
from known analogic operations to numeric
elaboration.

This work is a building of a robust skeleton, usable,
but, mostly, usable as a base for future
development.

19/09/2016 Software Defined Radio with remote head and Internet clients 6

Framework
● Sampler: together with an embedded on the top of a hill

● Server: a PC in a webfarm nearby

● Clients: a browser anywhere

Sampler

Embedded

Server

Client

Client

Client

internet

A simple scheme:

On a top of a hill I put antenna, sampler, an
embedded that sends UDP data.

On a webfarm I put a server.

Connection between top-of-the-hill and server can be
made with a WiFi bridge in the 5GHz band.

The server is accessible via Internet.

Bridge tested on S.Salvatore-Barbengo for 68MBit/s
data rate, flow required is 50Mbit/s, if could be
feasible.

19/09/2016 Software Defined Radio with remote head and Internet clients 7

Development
● Hardware: COTS components off the shelf

– Samplers

– Embedded

– PC

● Development: Spiral model

● Software: KISS keep it simple and stupid

I believe in the philosophy of COTS, to reduce costs
and to have quick replacements.

I also try to make the software as simple as possibile
to allow further development.

I use a spiral model tinking – coding – testing –
changing, one phase at a time.

First phase was acquiring experience on GNURadio.

Then I’ve used GNURadio to test hardware.

Then I wrote software using GNURadio to test output
or as a reference.

19/09/2016 Software Defined Radio with remote head and Internet clients 8

Devices
● Philosophy: COTS (components off the

shelf)

● At the beginning very cheap RTL
dongles

– Tested with GNU Radio

● Then, thanks to an agreement with
ELAD, much better and documented
samplers S1 and S2

– First, developed GNU Radio drivers

– Then USB→UDP tunnelling program

Following COTS, at the beginning I’ve used very
inexpensive RTL-SDR devices (10$/unit). But these
devices have poor performances.

During this phase GNURadio has been carefully
studied, and some modules has been developed
(see appendix 1)

An agreement with ELAD allowed me to gather much
better samplers, fully documented, with access to
company engineers at the higher level: I revamped
the old GNU Radio module and wrote new
modules, so I have gained the knowledge to build
the USB→UDP module.

19/09/2016 Software Defined Radio with remote head and Internet clients 9

Tools
GNU Radio as
a reference
and a test bed

To verify the feasibility and to have a reference, I’ve
used GNU Radio (mostly in the first part of work).

During the test of the first two modules, instead of
client not yet developed, I’ve used GQRX that is
based on GNU Radio.

19/09/2016 Software Defined Radio with remote head and Internet clients 10

Computers
Also here, COTS

Raspberry PI 2 as
embedded that hosts
USB→UDP bridge

Computer with I7 Intel
hyperthreaded quad core
CPU as “server”

I’ve used Raspberry PI for a lot of projects and I
realized that its computation power could be
enough.

A series of measurements confirm my assumption,
after some measures, I only increase the number of
USB reception buffers from 2 to 4 to avoid any risk
of data loss.

As server I used my laptop: it is old, but not so
outdated, it could be used as reference for a little
server, for one OM personal station (I’ve
succesfully run 3 clients) and a state-of-the-art
server could manage many more clients.

19/09/2016 Software Defined Radio with remote head and Internet clients 11

Software

Wait condition

Compute LO

Mixer

Fire HF FFT

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Fire MF FFT

Fire audio FFT

Wait condition

Compute LO

Mixer

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Wait HF FFT

compute FFT

Fire HF FFTFire HF FFT

Wait HF FFT

compute FFT

Wait HF FFT

compute FFT

Mixer

Compute BFO lr

Send audio frame

Send HF FFT frame

Send MF FFT frame

Send HF FFT frame

Thread A Thread C Thread B

EmbeddedEmbedded

 Receiver Server Clients

Client
Manager

This is a panoramic view of the software developed.

The yellow areas are inside a web browser.

Some new development in “web socket”, “web
worker”, “audio context” was necessary to use
efficiently the web browser (development done in
javascript).

There is a lot of work made to convert analogic
heterodyne to DSP algorithms.

19/09/2016 Software Defined Radio with remote head and Internet clients 12

First phase

Embedded

● Before any work an RTL-SDR test was
done using GNURadio

– To verify RTL-SDR usability

● Before testing GNURadio was studied

– To be able to use it correctly

● Some flowgraphs were developed

– They resulted useful to test RTL-
SDR

● RTL-SDR discarded in favor of ELAD
samplers

– Development of modules useful for
project (callbacks structure reused)

Work with GNURadio has taken more than 4 months.

It was fundamental to test RTL-SDR dongles (and to
discard them).

Once seen ELAD samplers, a module to link them
with GNURadio was developed, with support of
ELAD and using as a reference an old module
developed by CSI Piemonte.

The new module allows some tests of ELAD
samplers usage.

The new module has been used as reference for
USB async data transfer transfer.

All this work is listed in appendixes 1 and 2.

19/09/2016 Software Defined Radio with remote head and Internet clients 13

Embedded

Embedded

● USB initialization (device dependent)

– For some devices also FPGA
setup

● Data transfer via callback

– To avoid data loss callbacks and
USB data transfer overlaps

● Network data flow via UDP

– No data loss, verified

● Commands received and confirmed
using TCP

– To exploit its characteristics.

The first part developed is Device initialization via
USB, then asynch data transfer.

Nothing really new, core tool is libusb-1.0

Data flow via UDP, TCP accumulates delays.

OS tailored to run on a “read-only” SD card.

Used threads to implement concurrency between
USB and TCP control communications.

All implementations are developed by me, few
libraries used (libusb-1.0, libpthread, libm, libc).

All-in-one source code, to enhance readability.

19/09/2016 Software Defined Radio with remote head and Internet clients 14

Receiver
● It receives UDP packets

● It fills shared memories

– Two banks, with associated events

– To allow clients to work on a bank at a time

● It talks with Manager (web application)

– Via Websocket

● It computes FFT

– To allow manager to draw spectrogram and
waterfall

Still nothing really new.

Different threads to shape parallelism, condition
variables to synchronize threads.

Shared memories filled with data to be processed by
clients, condition variables on shared data to
synchronize client-threads (via broadcast).

Websocket newly coded by me to allow operations as
simple as possible.

FFT computed to send its data to Manager.

As few as possibile libraries (pthread, lssl, crypto).

All packed in a single C source file to enhance
readability.

19/09/2016 Software Defined Radio with remote head and Internet clients 15

Manager

Embedded

● Web worker to escape javascript
monothreading

– Events/messages bwtween worker and
main thread

● Graphic context to design graphic elements

– Layered graphics to reduce computation
load

● Websocket communications

Written in Javascript, that is interpreted in a single
thread.

Use of web worker to use an other thread.

Web worker implements Websocket (very simple in
Javascript)

Messages to communicate between two threads.

Use of graphic context to draw spectrograms.

Two programs: the main one (index.html) and a
separate web worker (web workers request a
separate javascript source)

19/09/2016 Software Defined Radio with remote head and Internet clients 16

Client

Wait condition

Compute LO

Mixer

Fire HF FFT

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Fire MF FFT

Fire audio FFT

Wait condition

Compute LO

Mixer

HF filter/decimate

Compute BFO

HF filter/decimate

Mixer

MF filter/decimate

Mixer

Compute BFO lr

Send audio frame

Wait HF FFT

compute FFT

Fire HF FFTFire HF FFT

Wait HF FFT

compute FFT

Wait HF FFT

compute FFT

Mixer

Compute BFO lr

Send audio frame

Send HF FFT frame

Send MF FFT frame

Send HF FFT frame

Thread A Thread C Thread B
● One client for each external request

– Developed as TCP server daemon

● Two threads to manage data processing

– All “normal superhet” processing: VFO,
mixer, MF filtering, BFO, audio

● One thread to manage FFT

– Periodically computed at three different
levels: input, intermediate, audio

● One thread to manage Websocket

Client is a daemon that implements a TCP server.

Once connected, launch a WebSocket server, two
data processing threads, and a thread that
computes FFTs.

Websocket and FFT use the same code used in the
other programs, no functions, no libraries for sake
of semplicity.

The data processing threads mimic a “superhet”
receiver (see next slide) and are started by shared
memory condition variable.

FFTs are computed and sent to client web browser
that draws spectrograms to help operator to tune
the frequency.

19/09/2016 Software Defined Radio with remote head and Internet clients 17

Data processing
● VFO / mixer to center to 0Hz the wanted band

● Antialiasing filter and decimation to spread the band and make
“downsampling gain”

● BFO / mixer to center to 0Hz the middle of wanted baseband

● Filtering and decimation to fit to a reasonable sampling rate

● BFO / mixer to move filtered band to baseband

● Classic FIR / IIR

● Classic “prostapheresis” mixer

This is not a telecomm thesis so the data processing
section is quite “classic”.

The reference is a superhet receiver with the main
difference that digital filters are implemented
around 0Hz, so a triple conversion is needed.

The oscillators are waveforms generated a bank at a
time, using prostapheresys formulas to avoid
trigonometric functions usage. An amplitude
compensation algorithm is used.

Also mixers uses the prostapheresis formula: having I
and Q signals this is straigtforward.

Filters are classical FIR and IIR.

19/09/2016 Software Defined Radio with remote head and Internet clients 18

Web client
● Webworker that manages Websocket

– Uses messages to talk to main thread

● Graphic context that draws spectrograms

● Audio context that plays audio

– After offline audio context sound
conversion

● Offline audio context

The web client has many things in common with
Manager: web worker, web socket, graphic context

The main difference is the audio management: audio
arrives at 24kS/s (audio context manages 20.5kS/s
to 48kS/s) and it is converted to the native audio
output samplerate (not manageable) by an offline
audio context, than it is used by the audio context.

The audio context uses a “processing” block that is
fired when the audio card needs data: at that time it
reads the samples produced by the offline audio
context.

There are callbacks triggered by clicks on
spectrograms and by the mouse wheel

19/09/2016 Software Defined Radio with remote head and Internet clients 19

Demo
Client

Here we can watch a quick demo of the project.

To make simple the demo I use a small signal
generator.

See the click and point freqency set and, also, the
mouse weel usage.

There is a lot of space for other buttons and
functionality.

The client is far from complete, but it is born as a
proof of concept.

19/09/2016 Software Defined Radio with remote head and Internet clients 20

Measures
50Mb/s on bridge

1Mb/s each client

4 simultaneous clients
0 10 20 30 40 50 60 70 80 90 100

Sample

F
F

T
C

om
p

ut
a

tio
n

 t
im

e
(m

s)

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Elapsed time (ms)

S
ig

n
al

 P
ro

ce
ss

in
g

tim
e

(m
s)

Network traffic in input (UDP) has an acceptable
value (it could also be lowered by changing UDP
packet format).

The packet loss monitoring shows no UDP packet
loss.

Output network traffic could be seen as a bit higher,
but nowadays network connections are far higher
(mine is 50/500 allowing tens of output streams).

Elaboration times, even with discontinuity, fall in an
acceptable range.

19/09/2016 Software Defined Radio with remote head and Internet clients 21

From here
● Change UDP data stream format

● Change Audio format (codec)

● CIC filters for decimator

● FFT filters for Bandwidth

● Other modulations

● AGC, Volume control

It could be interesting to make a certain amount of
changes, suggested by measures and evalutation,
to build a real product (idea for a new work?).

