Scuola universitaria professionale della Swizzera italiana
Dipartimento tecnologie innovative

SUPSI

Software Defined Radio
with Remote Head and
Internet Clients

Studentel/i
Giovanni Franza

Relatore

Tiziano Leidi

Correlatore

Loris Grossi

Committente

Tiziano Leidi

Corso di laurea

Master of Science in Informatics

Modulo

Anno

2016

Scuola universitaria professionale della Svizzera italiana 2/122

Software Defined Radio with Remote Head and Internet Clients

Giovanni Franza

To Marina,
without whose encouragement, support and patience,
I would never have arrived at this result.

To Franco,

for his great support

and availability,

(also of the devices he designed and produced).

To Alberto,

for his patience, provocations,
and precious suggestions.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 3/122

Main Index

1 = ADSITACT. ... uteeee ettt ettt ettt eee ettt e e ee ettt e e e e baeeeeetaeee e e asaaeeeetaraeeeetaaeeeenaraaeeeeeeaeannnnnnnns 6
2R |31 oY L1 T s (o) o VOO USSR 7
B0 R 31741 0] 01 00T c) 1 R PPRE 8
2.2 - USET EXPEIIENCE........eiieieeiiieeeeiiieeeeeitteeeettee e sttt e e s sitteeessbteeessasaaeesesasaaeesesssssssnnnnnnns 9
3 = ODJECLIVES. ..ottt ettt ettt ettt ettt e st e et e e st e s b e e s a b e e bt e a b e e be e e s abeeeesbeeeenaeeas 11
4 - WOTK OTaANIZAtION. . ..veirureerrieiriierniteessieessreessteessseesssseessssesssseesssssesssseessssessssseessseesssnsnns 12
4.1 — State of the ATt ANALYSIS......coriiiiiiiieeietee ettt ettt e e s 12
4.2 - Hardware Market ANalYSiS.....c.ceiecuieiriieiniiieiniiieinieeesieeesreessiseesssseesssseesssseesssesessssesnnns 13
4.3 - FirSt SOftWAre SUIVEYcoviiiiiiiiiieiiieeieeieeete ettt ettt et e sttt e sabe e st e ssbeessaesaseas 14
A4 - GNU RAGIO....ccooiiuiiiiiiiiiiieeiitieeeee ettt e eeesareereeeeeesesssssaseesesesesesssssssssraraannnnnnns 15
4.5 = INGHIAL TOSES...eeieeecireeeeeeiteeececiteeeeecteeeeeerre e e eeetteeeeeetteeeeeetaseeeeenssaeeeeeasseeeeeassaaaeaeeeeseeeann 16
4.6 - DEVEIOPIMENL.uiiiiiieieiieiiieeriee ettt ettt este e e steeesaeesssbaessaeeesnaaaeeesnnnneaes 16
O — SYSTEIM STIUCTUTE.eeiiiiiiieiiiiiee et e et et e s ettt eeeert e e e ssasreeesesnraeeeeesssssneeeeeeeeeessesns 18
5.1 = SAIMIPIET...ceiiiiiiiiieeiee ettt st e e st e e st e et beeesabeesabeessabeessbaeesnbaeesnbtaeeeeennsnraeesennans 19
5.2 = EMDEAAEOM......ccceeeeeeeeee et ee e e e e e e ar e e e e aaae e e e naraeeean 21
5.3 - Connection Between Embedded and Server........ccccuvveeeiiiiiiicciveeeeeeeeieeivveeeeeeeevennnns 21
5.4 - Protocols Between Embedded and Server............ccueeieeeviieeeeieeeececieeeeeeeeeeecnnvveneeee 22
S R 1<) A1/ <) SO U U U U U U 23
5.6 = CLIBIILS.uvveeeeeieee e ettt ettt e eeette e e eette e e eeetaeeeeeetaaeeeeeasaeeeeeessaaeeeessseeeeeeeesnnsnssssssnnseeens 23
6 - IMPIEMENIATION. ..c.uvieirrieiitieeeite et e erteeete e ette et eesteessateeesabeesssaeesaaeesaseeesssaessssnsaeesssnseees 24
6.1 - Samplers and Radio Management..............coceevuerieneeniernienennienieneesieseesseeseseesseessenns 24
6.2 - Sampler Management PrOGIraml..........cooueeerveerrueeniieeniieeenieeenseessseessseessseeessnnessssenens 26
6.3 - Central Control PrOgrami............ccceeiiriiiiiinieeienieesteeee ettt ettt e e 35
O I @051 40 B 53 40 /1<) U 50
6.5 = CLIONE RECEIVETeeiieiiieeeeeiiiee et eectee ettt e e eeeteeeeeetaeeeeeeaaeeeeensaeeeeeasaeeeeennsseeeeeenns 57
6.6 - Receiver USer INTEITaCe...........coovvviiiieiiieeeeeieee ettt ceatee e eeaae e eaaaeeeeeean 72
7 = CONCIUSIONS.vvieieiieeeeeeieee et e eeete e e eeette e e e eetaeeeeesabeeeeeesseeeeeesssaeeeesnsseseesssseeesessseesennnnns 81
7.1 - State of the Project and Future OPtiONS.........ccceerierriienieeiieenieeieesieesieeesireeeseneeennens 81
8 - BIDHOZIADNYceuiiiiiiieeeeee ettt ettt et et e st e e aaee e 82
A - AppendixX 1: GINU RadiO.....coocuiiiiiiiiiiiieiniieesiieesieeeseeessre e s e ssteesineesaeeesaaessssaesnsnsnaeeens 83
A.1 - GNU Radio INStallation.........cccovuiieieeiiieeeeeieeeecccieee e et eeeireeeeeereeeeeeareeeeeenreeeeennns 83
A.2 - GNU Radio ATCHItECTUIE....cccuvvvveveieeieeieiiiiirieeeeeeeeeeirreeereeeeeeesssrrereeseeeeesssssrenssesssrnees 84
B - Appendix 2 — GNU Radio Realizations............ccceeeeriiriiiniiniienienieerteeee e 103
B.1 - Wide Band FM Monoaural RECEIVET.........coouvvvrieriiiiieiiiieeeeeeeeeeeeeiinveeereeeeeeesnnnenns 103
B.2 - Narrow Band FM Monoaural ReCEIVET............ccccvvieeeiivieeieieeeeeeieee e 111
B.3 = SSB RECEIVET.....ccoe et 113
B.4 - KNOb COMIMANMS.......ccciiiiiieieiiieeeeeiieeeeeeieeeeeeeteeeeeeitreeeeeesseeeeeessaseeessseseeeeeesssnnnssnnns 115

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 4/122

Pictures and schemes

Picture 1:
Picture 2:
Picture 3:
Picture 4:
Picture 5:
Picture 6:
Picture 7:
Picture 8:
Picture 9:

Picture 10:
Picture 11:

A map of interferences from a Belgian amateur Station............cceceeeverersiereerieneesieseesreseesseseessesssesseesnns 8
A SPOCITOGIAITL ...ceeuvteeriteeenuteeeetteeeteee ettt eeeuneessuseesabeeesasseesnseesanseeesnsaesanetesansaeeansaeesaseeessnsaessnnnnnnnnneeeeeens 9
Spectrogram (upper) and its relative waterfall (JOWer)..........coceeireririnineneeeeeeeeeeeee e 10
A traditional GUI tO CONtIO] @ trANSCEIVET.....ccuiruerieriieieniieieniteteeit et ettt sttt seeeeesaeesee st esbesmeenmaeens 10
Ettus Research X310 5.060 Euro and B210 1.160 Euro (March 2016).......c.ccccueeveeveeecieenieccieenieeeenns 13
Fairwaves Um TRX 2.2 950 $ and UmSITE-TM3 4000$ (March 2016).........cccceeveereeereeecreeenreeereeenns 13
Perseus 799Euro, bladeRF X115 650 $, and HackRF One Kit 330 $ (March 2016)........ccccceeevervennnenns 13
ELAD S1 369 Euro, S2 525 Euro, DUO 1.159 Euro (August 2016).........ccccevveerierrienernierereeesreeeeneeens 13
A GNU Radio flow-graph that fully implements a 4QAM flow with FDM DUO.........ccccccevevueneencenne 15

The structure of the system showing the connections between blocks...........ccoeveeiererrerceeneeceereenenn. 18
The dongle opened (left) and shielded (right)..........cccooiiriiininin e 19

Picture 12: Three ELAD devices: left to right, samplers S1 and S2, transceiver FDM DUO.........cccceceevueriueeniennne 20
Picture 13: The NanOBeam MB5........cc.ooiiiiiiiiriiienteie ettt ettt ettt et st et st e see st esbe st e saesnbesbesnsesstensesateseeens 21
Picture 14: The structure of the sampler management Programl............ceeeruerueriertertertertereeeeesesesssessesssessseessesees 26
Picture 15: The I/Q data UDP PACKEL........c.cecerirrierieiereerteeeerteseesteseestestestesssessesstesseessessesssessesssessesssessseessssesnne 27
Picture 16: USB callback timing (green:avg & dev, red: too high max value).........cccceceevrerinneninencncnecneene 32
Picture 17: The structure of the central CONtrol PrOGram...........cceeevererreeriereeseereseeteseeesseseesseseesseesssesssssesssseennns 35

Picture 18:
Picture 19:
Picture 20:
Picture 21:
Picture 22:
Picture 23:

WEDSOCKEE Life CYCIE....eetieiiteeieeeee ettt et e se s s e se e s e s see st eesaessassaesesnseas 38
WebSocket initial exchange eXample..........coocoieiiiiiiiiiinieee ettt 39
WebS0CKet frame SITUCHUTE.........coveteieteietecetei ettt ettt ettt ettt et et b s besaesbesbesbesatesaeeeneeens 40
Blackman-Harris WiNAOW.........ccueruirteririeneniteneestesee ettt ettt et st et st esee et e stestesbesbesateesseeennee 44
Blackman-Harris Windowing fUNCHON...........ccirierierieieieietete ettt s 44
The WebSocket FET fTaIMe.......cc.cciitiiiriririieieeeresteestetetetet ettt st ettt et sne e s 46

Picture 24: Traffic on the server measured by Nload..........ccecereriieririienieeneee e 48

Picture 25:
Picture 26:
Picture 27:
Picture 28:
Picture 29:
Picture 30:
Picture 31:
Picture 32:
Picture 33:
Picture 34:
Picture 35:
Picture 36:
Picture 37:
Picture 38:
Picture 39:
Picture 40:
Picture 41:

The control BrOWSET iN ACHION......ccueiiereeterieeteseeesee e et et e e e e seesreesae st esseeeessesssesseessesseessaeessseesnsennnes 50
The control browser appliCation StIUCLUTE.............ccereeevereerierieiereesteeee e eeesaeeeeseeseesseessseesseesssseeanns 51
Client receiver structure (without WebSocket thread).........ccceevvervieerieriiinierieeiececseesieeee e 57
FIR filter SCREMALIC....c.veitieieciieieeeeteseet ettt sttt e e e e et e e e et e e st e se e e e s seessessaessaeesssaesssesansesensens 62
One (left) and two (right) delay line IR filter SChEMALICS........ecveeverieririririrereee e 63
Parameters, response, and coefficients of the first, 15 coefficients, HF filter........c..ccccecveirrvirriunrnnne. 65
Parameters, response, and coefficients of the second, 21 coefficients, HF filter..........cccccceevnvvrrrrennns 66
Design of audio TTR fIlteT........ccceeieriiriieierteie ettt sttt s e e eesaeesaesaeeaesnneesnns 67
Elad-server and elad-client aggregated bandwidth............ccccceviriinincienienirceeeeee e 70
A sample of HF thread elaboration times............cccecuerereesieeeeseeieseetesesee e e sae e ae e ae e e seennas 70
A sample of FFT €laboration tIMes..........co.eeererierieriertenteteieeeeee ettt st ste st et et et et et et ene e beenneas 71
A screen shot of the receiver USer iNtEIfaCE........c.ecvevieeieriieere et e e 72
Web receiver user interface SIIUCLUTE...........ccecveeviiierieeieciectecie et et et e e e te e e ere e e eseereesseeaaesseennesnseeas 74
Starting the fLOWETAPN......cc.eiiriiieee ettt ettt ettt sb e s bt e s et e saaesntesneeens 92
RUNNING @ DLOCK. ... ettt ettt e st e e et e s e et e saesssessesssesnsaesnnneennnn 97
Picture 40: gr_modtool showing possible OPeTations...........c..coeeereererernererieeneneneseneeere e 98
Picture 41: Making module and block structure with gr_modtool...........ccccceeeervrcrerveceneeerieeeeeeee 99

Picture 42: Picture 42: Editing QA code. Only test_001_modename() is inserted by hand............ccccccvvrrererrennnnns 99
Picture 43: Picture 43: Editing Ctt COR.....couiriiiirieiietetteteseetesee ettt ettt et sb et se et st sae s enees 100
Picture 44: Picture 44: Generating XML code to integrate block into gnuradio_companion............cc.ccecerueeeneee. 101
Picture 45: GNU Radio companion showing the new module and block...........cccccecteririiininiininieninereeeeee, 102
Picture 46: GNU Radio companion WBFM block diagram............ccoeerviereriiineniieninieneeieneeieniie et 103
Picture 47: GNU Radio companion WBEFM INterface.........cccceecverervirrerieereriieneeteseeieseeseeseessesseessseessseessnsesas 104
Picture 48: Dongle without and with Shield...........cccceririiririii e 105
Picture 49: GNU Radio companion NBFM block dia@ram...........cccceceeeerieecierieeienieieneesieeeesaeesseseeeesseseesneens 111

Picture 50:
Picture 51:
Picture 52:
Picture 53:
Picture 54
Picture 55:

GNU Radio companion NBFM iNEIface..........cccceeeerierierieeieneeieneeeeseesaeseessessessesssessssesssssessnees 112
GNU Radio companion SSB from file block diagram............cccceceririirenenenienieniieeeneenceeesee e 113

GNU Radio companion SSB from file interface..........cccceeeeeereeiereeieneeieceeeseerre e evee e 114
GNU Radio companion NBFM with knobs block diagram............ceceeevienenieneniiniieiiieeeieceeeene 120
: Arduino Uno manages two optical incremental enCOder............cocuervirrierienienienenieeeteree e 121

GNU Radio companion NBFM with knobs GUIL..........ccccevieriirieninieninieneeieseeeesee e snne e 121

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 5/122

Listings

Listing 1: Sampler management program Spawning thread..........cccecuerieririiiniienieriniertere ettt ettt stestesaeesaeensesssaeas 27
Listing 2: Prepare USB ASYNC tTANSTET.......ccetiiiieieieteteteete ettt ettt ettt ettt st b b s b sbesbesbesbesbeesateesaaeenbeenaeeens 28
Listing 3: Sampler management program: CallDack..........cccoecireviriiiiiniiiniiiiiecceee e 29
Listing 4: TCP server in sampler management PrOGIaIL.........ccc.erterutrrierriinieneerieetenieesiee e sate st estestesseesseentesstessareeessnneessnneeas 31
Listing 5: Callback with timing profiling inStruCtions (I€A).........c.ueeuerterterterererteterte ettt sttt see bbbt saesbeesneeesnee s 32
Listing 6: The changes needed to avoid sporadic data 10SSES.........ccueeuerierieriirierienieneeeeree ettt s 34
Listing 7: Central control program: shared memory & condition variables Creation.............cccceveevueerierienersensienieneee e 36
Listing 8: Central control program: UDP reading and shared memory filling..........ccccooeviriiniiiiiiniiiniiiccceceec e 37
Listing 9: Central control program: WebSocket initialiZation..........c.couerierierieriinienienenieerecererecesestere e

Listing 10:
Listing 11:
Listing 12:
Listing 13:
Listing 14:
Listing 15:
Listing 16:
Listing 17:
Listing 18:
Listing 19:
Listing 20:
Listing 21:
Listing 22:
Listing 23:
Listing 24:
Listing 25:
Listing 26:
Listing 27:
Listing 28:
Listing 29:
Listing 30:
Listing 31:
Listing 32:
Listing 33:
Listing 34:
Listing 35:
Listing 36:
Listing 37:
Listing 38:
Listing 39:
Listing 40:
Listing 41:
Listing 42:
Listing 43:
Listing 44:
Listing 45:
Listing 46:
Listing 47:
Listing 48:
Listing 49:
Listing 50:
Listing 51:
Listing 52:
Listing 53:
Listing 54:
Listing 55:
Listing 56:
Listing 57:
Listing 58:
Listing 59:
Listing 60:

Central control program: WebSocket frame reception..
Central control program: TCP command SENAING.........cccceeruerierirerereninenenieeeseseeesesieebe s siee s s saesaeeseeaeas
Central control program: FFT coefficient preCOMPULAtiON...........ceeeuereeuiririeieteteiceeeeeiceie et bee e 43
Central control program: FFT computing
Central control program: the composition of the WebSocket FFT frame...........cccceceeenerineneninienreeneeneenee e 46
Central control program: the data loss detecting Structure (Ied)..........cecueetereererrieriieneeieetenteseee et 47
The instructions that measure the fft computation time (red)
The Web Worker with the WebSocket implemented...........cocueviereriienienierienieneeieeie st seesae e saae e eees
The canvas AefiNItION.ccueeriiiriiiriciiece ettt s
Spectrogram background drawing..
SPECIIOGIAIM ATAWING. ...c..veruteuieierteetterte ettt st et e e sate s bt et e e tesut e s bt et e s atesbe e bt eatesatesbteabeeaeeebtenbeenbeentesateseeaseeeeabaees
WaALETTAll ATAWINGc.eeeeieeieeieee ettt ettt ettt et et et e b et et e e et e b e eenbenbenbenbebesaeaaebesaean
Buttons management.....
Local Oscillator.............
Mixer (using prostapheresys formula)...
FIR filter implementation.....................
IIR filter implementation...................
Filter coefficents in the source code......
Calls to the FIR filter implementation...
IIR filter coefficients......
Calls to IIR filter........ccccocuue.e.

The signal processing thr@ad...........cceevueriiriiriiiieeeteee ettt st ettt et s e et ebe st e sbe e beebeesabaeeean
The WebS0CKet thread.........c..ccivviiiiiiiiiiiiiiicci ettt s s s
Definition of the graphic elements in the page using HTML
The functions fired by the BULONS.cc.oiiriririe ettt
MOUSE RANALETS........oveniiiiiiiciitcc ettt st b e a et b e n e sa et n s
Receiving audio data from WebSocket and rendering them
The context that fill the rendered data into the buffer when requested by audio card............cccceeererineneneeneenne 80
A typical shell to install GNU Radio along with hw support Software...........c..coccevererenerinienicnineceieene e
Final part of Python generated by gnuradio-companion for WBFM receiver....
Initial part of Python generated by gnuradio-companion for WBFM TeCEIVET...........ccceeruereereenienriereireeeenveeesneens
Partial view of top_block class in the .../grc_gnuradio/wxgui/top_block_gui.py file........ccccevvierviinieniiinniernnnnen. 86
Partial view of top_block class in the .../gnuradio/gr/top_block.py file
Partial view of top_block class in the .../gr/runtime_swig/runtime_swig.py file.......cccccceoveninininnninncnicnnnns 87
Partial view of top_block class in the .../gnuradio-runtime/swig/top_block.i file.........c..ccceerririiininininiiene. 87
Rename the top_block_swig class in file .../gnuradio-runtime/swig/top_blocK.i..........cceceiiriiiiiiiiiniiiiinieeee 88
Partial view of top_block class in the .../gnuradio-runtime/lib/top_block.cc file..........ccccevurviriiiiirnnciininriiiennene 88
Start() method in the gr-sources/gnuradio-runtime/lib/top_block_impl.cc file.........cceeereierirviniieniininieieieeieene 89
The make_scheduler() method in .../gnuradio-runtime/lib/top_block_impl.CC.......cccervieriinircieriiniereeie e 90
Methods and constructor in the .../gnuradio-runtime/lib/scheduler_tpb.cc file........cocceeievirniniiiniiiniiierieeeeen, 91
tpb_container in the /usr/local/include/gnuradio/thread/thread_body_wrapper.h file...........cccocoiiiniiiinnnnnnne. 93
tpb_container in the gr-sources/gnuradio-runtime/lib/scheduler_tpb.cc file.........c.ccoeiininininininncee, 94
Definition in the gr-sources/gnuradio-runtime/lib/tpb_thread_body.h file.....
Constructor in the gr-sources/gnuradio-runtime/lib/tpb_thread_body.cc file.........c.cooeviiiiiiiiiiiiiiieee 96
run_one_iteration() in gr-sources/gnuradio-runtime/lib/block_eXeCutor.CC.........ccccvvererrerereererienieerereee e 97
Python code generated by gnuradio-companion for WBEM IeCEIVET........c.c.eeeruererrerrrenieerieeneeenieeeieneesensenseenne 110
Code to manage encoders on Arduino Uno board .
USbKNObS MOAUIE GENETATION.c.cevtertieiertertierieeteeterteerteetesteesteetesatesteebesstesseesseessesssenseesesssesseessesssassnsseesnnns
KnObS blOCK XML AESCIIPLION.cuveuteeetertertistentestteteete st ettt eb et e sbe st e bt s bt sb e bt s b sbe e b e e bt sbe e bt ebeebe e bt e st eaeesbeebeesabeenee
Knobs python class .
Part of grc XML file with frequency variable_knobs definition.............ccceeererierenireneneeeseeese e 122

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 6/122

1 - Abstract

The goal of this project is the realization of a device that allows the reception of radio
signals, their demodulation and characterization of their parameters. This project uses, in the
“head”, a device for direct sampling of radio signals, with USB output. This "head" combines
the device and an embedded computer to allow sending the samples from a remote position,
difficult to reach, to a central processing unit via a radio link (e.g. IEEE811b/g/n). The “real”
receiver is a web application, hosted on a web server in the central location, that can be
reached via the Internet using a web browser running WebSockets. All this equipment is not
only a “radio receiver" but it allows the exploration of the desired frequencies, highlighting
the frequency spectrum and, through the use of an antenna and a calibration process, the
measurement of various parameters of the received signal. All the developed software is
licensed by the GPL and its structure allows an easy integration of “ad hoc” new
elaborations.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 7/122

2 - Introduction

With the availability of increasingly powerful processors we are witnessing an increased use
of what is called SDR, or Software Defined Radio. The purpose of this approach is to replace
as much as possible the analog processing with a corresponding numeric processing.

At present this processing is normally divided into two distinct areas, a first one that includes
the filter for decimation of the samples and a second one that includes all the processes of fine
filtering and demodulation.

In this approach the "head" of the device is made up of several analog filters, sometimes a
converter, one or more ADC, and a FPGA. This "head" is the most tricky and expensive part
of a receiver and often costs over 1000 Frs.

Although this approach was proven fruitful, it, together with the undeniable benefits of fast
processing and safe marketing, also brings its own limitations due to being a specialized
hardware. Such limits lie mainly in less flexibility and difficult inspection of the code itself, as
well as in the cost of the device.

However today there are devices that can be found for an extremely low price, made for the
DVB market, which can make available a stream of I/Q samples through a USB port, that can
therefore be exploited in place of the most expensive "heads" of high quality available on the
market.

In the first part of this thesis we explore the use of these devices, and in the second (the
development of the software) we work with a most affordable direct sampling device built by
ELAD, an Italian company located near Pordenone.

When approaching the project of a Radio, many issues have to be taken into account, and a
prioritization must be done.

There are two distinct areas that, in my humble opinion, must be taken in serious
consideration: the first affects the physical form of the “radio” itself, and is related to “where”
the radio is, or, better, where the parts of the radio are. The relative considerations are
presented in section 2.1 and refer to the current environment where radio amateurs follow
their hobby.

The second area is tied to the fact that SDR has changed so much the capabilities of a radio
receiver that its human interface has to be modified to reach the efficiency that these changes
make possible. Thoughts about this area are presented in section 2.2.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 8/122

2.1 - Environment

The rationale for the proposed work is the fact that nowadays many factors can cause a poor
reception of HF radio signals. Our houses are literally filled with poorly screened devices,
that, despite the well known anti RFI rules they are supposed to comply to, emit an overall
high level of unneeded spurious signals all over the HF spectrum (and over...). In the
neighborhood, especially in towns, there are lot of sources of RF noise, varying from street
lights to obsolete industrial equipments. An example of this situation can be seen in Picture 1,
built by a Belgian Radio Amateur. And this is only the beginning because, in our crowded
countries, it is even more difficult to erect a reasonable size HF antenna, also for the fear of
the radio waves spreader from unacculturated anti-GSM zealots. In this scenario a solution
could be the remotization of the receiver. This has many benefits, ranging from the use of a
remote, interference free, location to the hiding of the antenna from too curious neighbors.
Remotization of the receiver enables also the sharing of the receiver itself letting people use
an arbitrary located device to hear what could be heard on different locations. This can be
considered a little bit silly if we do not think at some interesting opportunities, like monitoring
with receivers at different locations our transmitted signal as well as a beacon or a station we
need to track.

Picture 1: A map of interferences from a Belgian amateur station

Ref: http://www.ondww.be/emi-rfi.html

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 9/122

2.2 - User Experience

Building a software radio receiver means an important confrontation with an object that has a
long history, a well established interface, and an important development in the last year,
mainly on the move of automation.

There are many epochal innovations in the radio sector, starting with the coherer, continuing
with vacuum diodes, the first amplifier, triode, and much time later, transistors and integrated
circuits; but it is not only a history of components: together with components also the
schematics are changed, from direct demodulation to direct amplification, to regenerative
receiver, super heterodyne, to Racal continuous tuning double conversion, to reach, at modern
time its SDR shape.

Each and every one of these innovations has caused a change in the form and usage of the
radio: some commands appeared, other disappeared, but, from time to time, the classic radio
remained built around a single object: the tuning knob, the radio “steering wheel” that is the
most used command of a radio receiver. This is its strength but also its limit: most of the time
spent using the tuning knob is spent looking for stations.

In other words, a radio operator acts as a blind mouse, running here and there hoping to hear
another operator calling or talking with others. The charm of the tuning knob, charm acquired
in the long century since the invention of the radio, on the long days and nights during which
generations of radio enthusiast and operators calmly or frantically moved their hands to rotate
this magical command in the hope of a contact.

Picture 2: A spectrogram

But those old good days are ended: this is the new era of the spectrogram, where we can see
the waves, looking at an irregular line oscillating on our screens (Picture 2). Most of the radio
stations can be seen at a glance; and, for the visual impaired (like me) or the small signals,
waterfall has been invented to show tracks of signals (Picture 3), breaking another Aristotelian
unit, Time, and letting the operator see not only the current transmissions but also the past
ones (and there are rumors that some algorithms are in development to also predict the future
transmissions).

So it seems that the old, good, tuning knob is no more needed, but habits are strong and every
user interface seems to have to implement a more or less virtual tuning knob.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 10/122

j l a ' |l ”{ [‘H fﬂ.

l'F e t || fl-ll

I| ‘ M ‘”
X ‘o‘ \-r‘

3.744

Picture 3: Spectrogram (upper) and its relative waterfall (lower)

The way this control is implemented is quite traditional: a view (in some, better,
implementation, a 3d model) of a classic knob that can be moved in various manners, using,
of course, the mouse, like in Picture 4.

This is far from satisfactory and quite ineffective, because it tries to mimic the aspect of the
knob, losing the real look, and feel, of the command: a simple wrist rotation.

In our work we explore a substitute of the wrist rotation by using a part of the mouse normally
available, that many of us are already used to use: the mouse wheel.

So, no more tuning knob. And also other commands will be fired, starting with the volume
that can be found on other parts of the computer interface.

All of this work is done to further explore what can be the user experience for a new radio that
refuses to be a new, digital, radio dressed with old fashioned suits.

I Radio Control Program for TS-480 =101]
Flle (F} Control{C) Rado(R) WwFO() Mode (D) TXRX{T) Memory (M) Scan(3) ODOSP/Fiker (D} Help{H)
5 —1-3-5-T7--9_-20-40---a0dB Qi3 A.N'l‘n PRE AGC SLOW
ALC TWIN PWE

::::;p I L; - ““Bm USB 14.000.000
m= powER | ~ CON| h:_:,um| cwriFSE | Fhe A | JJ KENWOOD

tock | TUNELK | | avTo | mEV | war | ~RIT {XIT

TONE Cm ey a
atT | PRE | a=B | asB | spur | [~ T l|_] CLEAR
DSP J Filtey Opeyation
| oM | m-vo| M | [HRI [BC1 FII.TERl

seNp | atmi | [NR2 [BC2
ANT | aTTUwE ||| scan | soseL | wscaw || w| Al rom =

| | | | B Click Enc. /Step RF GAIN MIN il pI MAT
CHI CH2 CH3 REC

[s | ﬂ AFGAIN M 4| | | max

ANE | TowE | cress | TRsET | M Y ﬂ SQUELCH MIN 4 | Max
HB | VOX | PROC | MENU | Ouack Mamory FF Oparation
ctk | acc | EwT | moLm | oME | omm | voicel | voicez | Rxm. | Dspm. |

Picture 4: A traditional GUI to control a transceiver

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 11/122

3 - Objectives

The goal of this project is the realization of a structure that allows the reception of radio
signals, their demodulation and characterization of their parameters.

The structure must consists of three parts: the first one is a “head”, capable of operating in an
unmanned remote station (like a mountaintop), the second is a “central server” that could be
deployed in a web farm, and the third is one, or many, web browser running a web
application.

In the head it must be used a “radio sampler”, a device that samples the signals from an
antenna, producing a flow of I/Q samples over an USB connection. In the same head an
embedded PC must take care of the management of the sampler and the broadcasting of the
samples on a network connection to the central server. Hopefully this could be made also via a
radio link (eg. IEEE811b/g/n).

The central server must take care of all the signal processing and, also, must host a web server
which the peripheral web browsers can access to operate their copy of centralized Software
Defined Radio.

This structure must not be limited to be used "as a radio receiver" but it should allow the
exploration of the desired frequencies, highlighting the frequency spectrum and, through the
use of an antenna and a calibration process, should be able to perform measures on the
received signal.

It should also lead to the possibility of collapsing this whole structure into a single container
to realize a single device that can be operated as a radio receiver.

All the developed software must be licensed by the GPL and its structure must allow an easy
integration of “ad hoc” new elaborations.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 12/122

4 - Work Organization

The work has been divided into different steps:

a state of the art analysis to know which SDR systems are on the market

a hardware market analysis to know what is the state of the art of the related hardware;
first software survey to select interesting projects to examine;

some work to acquire confidence with a framework selected as reference;

initial tests with the hardware and software to verify the hardware and software
performances and to get some ideas on how to develop;

development and test using a spiral model approach; this phase includes tests at each

round, so the last round tests acts also as acceptance tests.

4.1 - State of the Art Analysis

Many different projects about Software Defined Radios are on the market. Among these we
have selected some that are, in our humble opinion, the most interesting because they act as
reference:

GNU Radio: a really complete infrastructure to “assemble” software radios - “GNU
Radio is a free software development toolkit that provides the signal processing
runtime and processing blocks to implement software radios using readily-available,
low-cost external RF hardware and commodity processors. It is widely used in
hobbyist, academic and commercial environments to support wireless communications
research as well as to implement real-world radio systems.”
(http://gnuradio.org/redmine/projects/gnuradio/wiki)

LinRad: an interesting and complete approach of a SDR originally built on Linux -
“The Linrad dsp software processes any bandwidth that the hardware can handle.
Linrad has its origin in software that was developed for 144 MHz EME CW but it is
quite general and should be seen more like a kit for designing a receiver than a
receiver for some particular usage.” (http://www.sm5bsz.com/linuxdsp/linrad.htm)
WinRad: an Italian SDR built on Windows - “Winrad is a software program designed
to implement a so-called Software Defined Radio (SDR), meant to run under Windows
XP, Windows 2000, or Windows 98SE (only up to V1.23). In a nutshell, it accepts a
chunk of up to 192 kHz coming from a half-complex mixer in form of two signals, I
and Q, fed to the PC sound card, or, alternatively, an I/Q stream coming from a direct
RF sampling receiver. It does a fine tuning inside that segment with a point-and-click
technique, demodulates (AM, ECSS, FM, LSB, USB, CW) what has been tuned and
optionally applies a series of filters to the results of the demodulation.”

(http://www.sdradio.eu/weaksignals/winrad/)

RTL-SDR: software to exploit DVB dongles to make SDR - “"RTLSDR" is a generic
term for USB digital TV (DVB-T) receivers that use the Realtek RTL2832U chip
which it was discovered in 2011 can function as general purpose software defined
radio receivers. RTL2832 based hardware is by far the least expensive, costing as little
as $8-12” (http://www.reddit.com/r/RTLSDR/)

ARM Radio: “ARM Radio is a VLF-LF-MW (only the first part of the band) SDR
receiver implemented entirely on the STM32F429 Discovery board, apart from two
small anti alias hardware filters. It covers from 8 kHz to about 900 kHz, with AM,
LSB USB and CW demodulation modes,narrow / wide bandwidth, and fast / slow
AGC”. (http://www.sdradio.eu/weaksignals/armradio/index.html)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 13/122

4.2 - Hardware Market Analysis

First of all we looked for the devices. Reasoning about the prices led us to consider the cheap
RTL dongles, as stated before, because a lot of interesting hardware have prices in the range
of 500-6000%, that is near to 25-300 times the RTL dongles. The interesting thing is that all
this hardware can be used in connection with GNU Radio program and derived applications.
In Pictures 5 to 8, we can see some devices available in the market.

Picture 8: ELAD S1 369 Euro, S2 525 Euro, DUO 1.159 Euro (August 2016)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 14/122

4.3 - First Software Survey

The method used to select software was a combination of multiple factors:

oUW

Is it possible to analyze the source code of the program?

Is it possible to use the lesson learned by reading the source code?
Is it possible to freely use part of the program?

What reputation has the program?

How much diffusion has the program?

How old is the last update of the program?

These questions are motivated by the fact that we planned to use these programs to learn how
the technology has evolved, and it is really hard, when not impossible, to learn from a
program without reading its source code (1), and it makes no sense to learn from a bad (4) or
obsolete (6) program. Also we needed to be able to use what we have learned without legal
troubles (2) and, if we found useful parts of the program, we appreciated the possibility to use
them (3). Condition 5 is a prerequisite for condition 4 because an unknown program would
not trigger so many evaluations and its reputation would remain uncertain.

Of course these questions lead mainly to FLOSS as well as Public Domain software, and the
chosen programs reflect this:

GNU Radio, chosen because it has a very complete infrastructure and can be used both
for learning and for making some test-beds;

RTL-SDR, chosen because at first we needed a software capable to manage RTL
dongles;

Linrad, chosen as a complete SDR program, able to talk even with RTL dongles;
Winrad, chosen as a complete SDR program on Windows platform, to examine the
differences between the two architectures;

libusb1.0, that is not a SDR program, but is the most important library to manage USB
devices;

ARM Radio, chose for its being recent, and its inheritance from Winrad on a
completely different platform, and also for its cleariness and simple inspectability.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 15/122

4.4 - GNU Radio

Working with GNU Radio we have not only examined the code, but we also have analyzed its
structure and the complete call flow to understand how it deploys the various blocks that are
outlined in the flow-graphs. Our analysis on GNU Radio allowed us to build various flow-
graphs and also some “out-of-the-tree” modules to manage both a “human-interface” (tuning
and volume knobs) and the complete set of ELAD devices. Many of these realizations are
depicted in Appendix 2, while in Appendix 1 there is a detailed overview of the GNU Radio
package. As an example, in Picture 9 it can be seen a quite complete flowgraph realized as a
demo of the usage of ELAD DUO together with GNU Radio.

Constant Source - :l - I: Audio Sink
Constant: 200/ el et L
ey Multiply Complex To Float Sample Rate: 48KHz

[pevice Name: hw1.0

GLFSR Source Sl
Degree: 32 ::;:b;::c:g:smllathn Points: 4 e ——

. 5 in
il [T Difterential Encoding ves Title: Expanded bandwidth
Ol Samples/Symbol: 16 Sample Rate: 12k

Excess BW: 100m Baseband Freq: 0
¥ per Div: 10 dB
Decimating FIR Filter ¥ Divs: 10
Decimation: 16 Ref Level (dB): -20
Taps: 10 Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 15
WX GUI Scope Sink Window Size: 300, 200
Title: | & Q channels Grid Position: 1,1, 1,1
Sample Rate: 192k Freq Set Varname: None
V Scale: 5m
1D: top _block Window Size: 250, 100
Generate Options: WX GUI Grid Position: 0,0, 1,1
Ly Vhrk sk ot | | T Cosnpionr
. Title: Bandwlidth -
Variable Sample Rate: 192k

Sample Rate: 192k

Baseband Freq: 0 Frame Rate: 1.5k

1D: samplesXsimbol

Value: 16 Y per Div: 10 dB i:fzslnllathn Size: 512
¥ Divs: 10 _”;en' o
Variable 2:: ::.‘: ::::”320 #-{l| Loop Bandwidth: 3.2m
1D: samp_rate FFT Siza: 1 Dzdk. Max Freq: 60m
Value: 182k —— Mu: 500m
Refresh Rate: 15 Gain Mu: 2

Window: Blackman-Harris
Window Size: 300, 100
Grid Position: 0, 1, 1,1
Freq Set Varname: None

Symbol Rate: 3k
‘Omega Limit: 5m
Window Size: 250, 250
Grid Position: 1,0, 2,1

Picture 9: A GNU Radio flow-graph that fully implements a 4QAM flow with FDM DUO

A complete exam of GNU Radio experience is presented in Appendix 1. The work with this
framework was so detailed because:
* we have learned how to mix C with python to avoid the need to compile flow-graphs;
* we have learned the particular use of libraries and classes developed in C++;
* we have learned how the data flow is implemented;
* we have learned how to implement out-of-the-tree modules to extend GNU Radio
capabilities;
* we have implemented modules that allow the usage of ELAD samplers and radio with
GNU Radio and this, in turn, has been used as “reference application”.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 16/122

4.5 - Initial Tests

To acquire confidence with the needed Data Signal Processing, a lot of tests have been made
using GNU Radio. This wonderful tool has allowed to initially verify the inexpensive, but
well supported, RTL-SDR dongles.

The module developed, WFM, NBFM, SSB radios, and a two knobs tuning unit, are
documented in Appendix 2.

Unfortunately, the performances of these modules are not really good, so it was decided to use
ELAD S1 module (see next paragraph).

4.6 - Development

The tests are performed during the development, in early phases of development the modules
have been tested using GNU Radio modules. A spiral development model has been adopted,
starting with very simple modules and testing them before adding complexity and
functionality.

The various development rounds are:

* development of a GNU Radio module to connect the various ELAD samplers; this was
done reorganizing an older module developed by CSI Piemonte to integrate the S1
sampler and was followed by the realization of the module for FDM DUO and then
S2;
during this phase a second generation of the modules has been created, to separate the
program that takes care of FPGA stream loading — that cannot be made open source
and is needed only for S1 and S2 — from the GNU Radio modules that are released
under a full GPLv3 license (all these modules can be found on the ELAD website at
the address http://www.eladit.com/download/sdr/Linux/index.php);

* development of the module elad-comms that reads from USB and sends USB packets;
this module has been derived from the C++ function that implements I/Q sample
reading in the GNU Radio module developed in the previous round; during this phase
it was customized a version of Debian Jessie Linux on a Raspberry PI to allow using
R/O filesystems and to launch automatically the elad-comms module.
this module was tested using a GNU Radio flowgraph that reads from UDP datagrams;

* development of a first version of elad-server module; this module reads UDP
datagrams computing an FFT, and also sends data to both a FIFO and a shared
memorys;
the program was tested first by using a GNU Radio flowgraph and then using GQRX,
a program developed using GNU Radio blocks that can be found at http://gqrx.dk/; the
tests have highlighted that the synchronization imposed by FIFO is not good for the
real time needs of the program, so this tool has been discarded in favor of shared
memories;

* development of a first web application with graphical capabilities for drawing the FFT
sent by the elad-server program, and its test;

* development of the basic frame of elad-client program, reading from shared memories,
with the oscillator, a mixer, and the FFT generation, and its test with a copy of the first
web application to verify the heterodyne working;

* development of the decimation filters, and the various FFT generations on the elad-
client program;

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 17/122

* development of a second version of the web program, performing two different FFT
drawings and its test with the last version of elad-client program;

* implementation of a WebSocket server as a substitution for the shared memory
communications between elad-server and web application and between elad-client and
web application; test of the communications;

* implementation — in the elad-client program - of the “second/third conversion mixers”
to move the center frequency of final (bf) filter to the proper values using a BFO, and
its test using the web application where a third FFT drawing has been implemented;

* implementation of the audio context in web application to play the audio extracted
from the incoming signal by elad-client and its test using elad-client program;

* aesthetic maquillage of the two web programs with FFT and background colors, and
buttons;

* security implementation of passwords in the WebSocket functions of elad-server and
elad-client program, and corresponding upgrade of the two web programs; their tests;

» upgrade of the TCP functions in elad-server program to act as a server, able to fork the
process so many users can “automagically” use the program;

» perform an extensive set of measurements on the complete set of programs to obtain
required metrics about network and CPU usage and processing times; as a
consequence the number of buffers in elad-comms has been increased from two to
four.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 18/122

5 - System Structure

There are many ways a receiver, or a transceiver, could be remotized. The most known is to
put all the receiving chain, from RF preamps to AF final stage, on the remote site and then
make a link to control the receiver, receiving only the audio output. While this has been
proven useful and its use has been widespread in the past 10 years, it is a suboptimal solution
that forces the use of a complete receiver, while we could do better operations by splitting the
receiving chain. With modern SDR receiving techniques we can remotize only the “sampling
head”, obtaining an I+Q samples flow from the remote site to a centralized processing site
that can redistribute the processed (i.e.: demodulate) signal to many connections over the
Internet, allowing many operators to listen to different signals on the same band, sharing the
use of the “sampling head”, something that is not possible with the previous solution.

As shown in Picture 10, the main building blocks are:

* An Antenna to convoy the RF field to the receiver. It can be as simple as a random
wire or complex as a rotating wide band log periodic antenna. In our first tests we used
a wire dipole.

* A Sampler (as in Direct Sampling Receiver). It has a minimum filtering, a selectable
attenuator, a ADC converter and a FPGA implementing Numerical Oscillator, mixer,
decimation and filtering to produce a IQ flow of the desired sample rate centered at a
given frequency.

* An Embedded Computer that talks to the sampler via USB receiving commands via
TCP/IP and sending IQ flow via UDP/IP.

* An IP link (wired/wireless/wireless bridge) to link the “remote head” to the server.

* A Server that collects the clients requests and processes the IQ flow to create the audio
demodulated output.

* Clients that are the system's User Interface, that display both FFT and waterfall for the
band and let user to select the frequency to listen to, and, of course, the software

components needed to play the audio.

NI

\ o

[Embedde®© — Client
= = —
—
s Iooo)
>ampler |'Server

Picture 10: The structure of the system showing the connections between blocks

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 19/122

5.1 - Sampler

At the very beginning we started using the well known and cheap RTL (RTL2832U), that can
be seen in Picture 11. This is a USB dongle made to allow reception of DRM stations. But
some users discovered the internal structure and made a library (rtl-sdr) allowing a wider
usage as general receivers. At that moment this idea sounded really good because:

 they are really cheap (less then 20$ each);

* they can be found quite easily;

* the source code of the support library is available;

* a library exists that allows their usage with the well known GNU Radio package;

* they cover a broad band starting from 70MHz and ending at 1300 MHz;

* some up converters exist that allow HF band (0-30MHz) reception.

At the same time these dongles have also some limitations, essentially linked to their being
cheap devices:
* adesign as quadrature receiver, with a very simple Local Oscillator;
* an ADC with only few bytes (8) and so, the need of some analogical preprocessing
inside the dongle itself;
* a very poor plastic body with no screening that needs some handwork to force RF
enter the device only from the antenna socket.

Picture 1: The dnle opn (left) a shielded (right)
Using these dongles we've made some parts of the work, testing the first part of the complete
structure (from antenna to server), when another possible solution emerges.

By an agreement with an Italian company (ELAD) we are entitled to use most of their radios,

that can be seen in Picture 12. This means that we can use their sampler or, even, their
transceiver to build the remote head of this project.

This lead to many positive improvements:

* they are really Direct Digitalization radios, using little or no analogical input
processing limited to an anti aliasing filter, that can be excluded for under-sampling
reception, and an attenuator;

* their ADCs have 14 or 16 bit;

* the ADC is followed by a FPGA that can be reprogrammed to send various streaming

speeds, from 192kS/s to 6.144MS/s;
* obviously they are not in the price class of the rtl dongles, but their price is much
lower than other sampler devices that can be found on the market;

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 20/122

they are specifically designed for the HF OM market, and in this field they are the
state of the art;

we have full access to the documentation, also to the reserved parts, as part of a
project to build an open source support platform for these radios;

having, at least, 14 bit sampler lets us avoid the work to trade-off bit/sample-rate
needed with RTL-SDR dongles, where we must decimate a high sample-rate at about
3MS/s to exploit the decimation gain for obtaining a better dynamic range; ELAD
devices have an original sample-rate of about 128 MS/s and the decimation work is
done inside the FPGA.

Picture 12: Three ELAD devices: left to right, samplers S1 and S2, transceiver FDM DUO

The support for these radios is really superb, we've had every possible information and, for
the DUOQ, also some upgrades of the firmware.
For these radios we were able to develop some packages, including:

a firmware loader able to load FPGA stream into an arbitrary number of S1/S2 devices
connected to the same computer; this firmware is not available as source code to
protect the FPGA stream itself from tampering;

a GNU Radio module capable to connect an arbitrary number of S1/S2/DUO devices
to a GNU radio flow-graph, to test their functionalities and to act as a reference for
this project;

the module that links these devices with an IP connection; this module is part of this
thesis work.

With this work done we are able to use any arbitrary mix of ELAD devices, even if the scope
of this work is to connect a single device.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 21/122

5.2 - Embedded

We have decided to use an embedded board as a bridge between the sampler and the network.
These devices have to do the following things:

Setup the sampler firmware when it is needed (firmware loading is not needed for the

FDM DUQ, but it is needed both for S1 and S2);
Receive TCP/IP commands from the network, maintain state information, send these

commands to the radios;
Manage 1/Q flows from the radios (using USB) and sending them to the server via

UDP/IP.

Since this is not a very hard work (mainly data transfer) we have selected a Raspberry PI 2 as
our implementation reference, because:

its free implementation allows us to know all we need to make the implementation
(we've customized a Debian 8 - Jessie image as operating system);

this project is still in a very active phase: we started with a Raspberry PI to continue
with model 2, and now model 3 is available, more powerful and with a compatible
form factor;

the board is little and cheap and its power requirements are reasonable.

5.3 - Connection Between Embedded and Server

This connection has two aspects: the first one is the physical one together with the
implementation of the ISO/OSI levels under the network level, the second is the
implementation of the ISO/OSI application level and the ancillary choices about transport and
network levels.

Picture 13: The NanoBeam M5

Starting with the physical level we can state that every link is possible, wired or wireless, but,
examining this assumption we must say that:

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 22/122

* a wired connection is usually possible when sampler and server are quite near, i.e.
when the server is in the basement and the sampler is just under the roof, like when
you exploit your holidays' or grandparents' country house;

* awireless connection using AP could be used more or less the same way;

* to have a real remote location the preferred solution is a wireless bridge working on
the 5GHz band using a couple of small parabolic antennas; our choice is a couple of
Ubiquity NanoBeam M5 19dBi 5GHz MIMO (see Picture 13) to connect the top of a
hill near our home; since the modulation is adaptive we made some test and saw that a
full 60 Mbit/s can be obtained without problems simply by correctly aligning the two
parabolic dishes.

5.4 - Protocols Between Embedded and Server

With the term protocol we refer to the upper levels of the communication between the server
and the embedded device. The choice of the protocol must take into account many aspects of
the problem:

* One single connection for commands+data or two distinct connections ?

e TCP or UDP transfer ?

e Which format for commands ?

Every decision has its pros and its cons. We started by describing the object of the
communications when we have two distinct flows: a command flow, that is mainly “upwards”
from server to embedded device, and then to sampler, and a data flow that is mainly
“downwards” from the sampler to the embedded device and then to the server. Seeing this we
can have the temptation to make a sort of unbalanced communication but it must be
considered that:

* even if the samplers do not send a confirmation for the commands, it could be useful
to store a “state” to the embedded device so we can query the embedded device to
know the state of the attached samplers;

* at the moment we are working on a remote receiver, but we can remotize not only a
sampler (as S1/S2) but also a transceiver (as FDM DUOQO), and this is the natural
evolution of this work.

So, the answer to the first question is quite simple: we need two different flows. Then the
second question arises: TCP or UDP? For the command flow TCP is the default choice, we
definitely don't want an “unaffordable” connection for commands! For the data connection the
question is more subtle, some could look at “lost datagrams™ as a severe fault but we have to
consider that this must be a “real-time” data-flow and we prefer to lose a datagram than have
a best effort latency. So our choice is UDP for data flow.

The third question is related to the commands format and the answer must be very well
reasoned because this choice has to deal with the compatibility with other tools:

* we make a work on itself, but it could be interesting that the “remote head” can dialog
with already existing tools, as, for example, GNU Radio;

* we have to manage three distinct devices, with different capabilities: samplers (S1/S1)
have very few parameters to set: Frequency, Attenuator, Input filters, where the
Transceiver (FDM DUO) has a lot of commands and, also, can send a decoded audio,
not only the I/Q flow.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 23/122

To answer these questions, for the commands we use the CAT “standard”. This “standard” is
widely used by the HAM community with the only problem that it has many dialects. We use
the dialect used in ELAD FDM DUO because:

we don’t have to do any conversion when talking to this radio ;
we have to translate less than 4 commands when talking to S1/S2;
if, in the future, we need to connect other radios, most of the commands are

compatible and we face with little, or no, work;
if, in the future, we need to use the remote part of this work with other software it
could be expected that this is the most available protocol.

5.5 - Server

The server has two distinct roles: the first is to talk with the clients, the second is to perform
the elaborations they need. The first role can be done via a normal web server plus a
streaming server, while the second requires an ad-hoc DSP program.

To host both we decided to use a 64-bit Intel server running Debian 8 OS (Jessie) and
Apache2 web-server.

The rationale for these choices is:

Intel 64 bit platform is powerful enough, well widespread, cheap;

the server is not in a remote site but in a more normal house/office, so there is no need
for an embedded device or exotic hardware;

Debian 8 is the last Debian release and it is ported on many platforms; we also use it
also for the embedded device, so it is better to use the same OS for both systems.
Apache? is the de-facto standard for web-servers and it is well integrated in Debian 8.

5.6 - Clients

No assumptions are made for the clients, apart from the fact they have to be able to properly
display HTML pages and have support for JavaScript. In the development our reference has
been Firefox.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 24/122

6 - Implementation

The modules developed are:

* A module that manages the samplers and the radios; it talks with USB with the device
and TCP/IP+UDP/IP with the network;

* A module that allow to command the sampler in the server;

* A module that prepares the web page where users can see FFT, Waterfall, and can
select frequency and modulation and sends live audio stream to the users.

* A web module that allow commanding the samplers and the radio talking to the server.

* A web module that implements the user interface allowing to “hear” the radio signals.

Apart from these modules some setup activities were done:

* Embedded SO installation and customization, with, in particular, the setting of the file
system to read only so the unit does not have problems from possible power supply
faults;

* Server SO and web server installation and customization, in particular adding
components for an efficient audio streaming;

* Radio bridge setup to allow the remote embedded computer to talk to the server;

» Firewall setup to let users access the server only when needed.

6.1 - Samplers and Radio Management

I had just started to work on this module when I started to collaborate with ELAD. The first
collaboration was on their website but then, knowing that I had some experience on Linux
systems, I was asked to take care of the update of an ancient GNU Radio module for their S1
sampler. This has opened the opportunity to work with all the line of ELAD products having
also physical access to them, and so the use of RTL was disbanded in favor of a much more
powerful radio.

Originally the module for S1 was a single blob that included all the code needed to initialize
the device and to dialog with GNU Radio. This because S1 (as S2 also) has no flash memory
and its FPGA needs to be initialized every time it is powered up.

The first development follows this guideline, initializing and using the device. The modules
consist of two libraries, one closed-source responsible for the FPGA initialization, the other
distributed as an open source “out-of-the-tree” module for GNU Radio.

When this work had been completed and proved its functionality I started to prepare the same
for the receiving part of FDM DUO. This was simpler because FDM DUO has many boards
and one of them is responsible for programming the FPGA when the radio is powered,
because FDM DUO was designed to be able to work both in conjunction with a PC and as a
standalone radio.

While the module was proven functional, it remains the fact that the two modules for S1 and
FDM DUO could not coexist in the same GNU Radio installation because they are not
integrated, and the situation worsened when a third module, for the S2 sampler, was
developed.

This situation was originated by the structure of the “out-of-the-tree” modules that is a “two
level” structure where the upper level is a “common level”. So, we need to have an upper
level for “ELAD” and some lower levels for the single devices. This could be done but it was

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 25/122

not the preferred choice because, during the S2 module development, some evidences
emerged.

The first evidence is the fact that there are two logical distinct parts of software: the
initialization and the operation. These two parts have many important differences:

* the initialization must occur only the first time the device is opened or when the
characteristics of the FPGA elaboration must be changed, while the operation must run
every time;

* the initialization phase could not be really transparent because the FPGA flow is an
industrial secret upon which ELAD bases its market position and competitiveness,
while the operation has no secrets, and relies heavily on libusb1.0;

* while in FLOSS world it is accepted that a firmware loader may be not open, we need
the maximum openness of the operation module, to allow users to do changes on their
own and include in their programs without a need of ELAD intervention;

* even if both samplers need an initialization and the FDM DUO doesn't, they are really
similar in their working so the operation modules look very similar to each other;

* also the initialization operations are really similar both for S1 and S2;

* even if it covers rare cases, it is important that an arbitrary set of S1/S2/FDM DUO
could be attached to the same PC.

So it was decided to develop four distinct modules:

* A firmware loader. Assigning the right parameters we can decide which configuration
will be loaded and in which device it will be loaded. Every run of the firmware loader
initializes a single device.

* A GNU Radio module. This module belongs to the “ELAD” structure and has a single
device driver that manages every device. To do so we introduced a parameter with the
type of the device (S1/S2/DUO) and a parameter with the serial id of the device.

* A service module that is similar to the GNU Radio one but does not interfaces with
GNU Radio, but with TCP/IP. Since GNU Radio is able to talk TCP/pi, this module
could be tested also with GNU Radio.

* Alongside with these modules we have decided to develop another module that allows
sending of CAT commands when needed.

As stated previously, the firmware module is “closed source”, but could be freely downloaded
and used without limits. The other modules are completely free and use GPLv3 as their
licensing scheme.

If the network module does not suffer from increased latency in use with GNU Radio, it could
substitute completely the GNU Radio one, to avoid the tremendous effort needed when GNU
Radio changes version.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 26/122

6.2 - Sampler Management Program

This software manages the sampler, reading samples from the usb port, and sending them
over UDP to a central site. It also implements a TCP server that accepts setup commands
(central frequency, attenuator state, lowpass filter state) for the sampler. In Picture 14 there is
the operation scheme.

Thread A
Setup
¢——p»| Usb Initializing
Start
< Asynchronous
transfer start
USB I/Q data
(asynch UDP packets NET
transfer) Callback
- (fired by transfer _
completion)
Commands TCP commands
B TCP server o EE—
Thread B

Picture 14: The structure of the sampler management program

6.2.1 - Choices

libusb-1.0 is used to connect the Sampler. This is done mainly because libusb-1.0 works in
user space and it also is thread safe.

UDP is used to send data to the central site. This is done mainly because TCP, having flow
control, introduces unnecessary long delays.

To make the communications more flexible, the I/Q samples are converted into floating point
values before sending them through the network.

The data received by the callbacks are converted into floating point and sent as 1024 bytes
long packets, each preceded by a header consisting of a counter, to allow packet loss detection
on the other endpoint, the value of central frequency, the speed of sampler, the status of low
pass filter and input attenuator to better qualify the stream of data.

“Plain” TCP, without an overlying HTTP implementation, is used to receive commands, to
keep the work simple but, at the same time, having the benefits of TCP.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 27/122

Seqguence number (long)

Central frequency (long)

Speed |Ipflatt

1st in phase sample (float)

1st quadrature sample (float)

128th in phase sample (float)

128th quadrature sample (float)

Picture 15: The 1/Q data UDP packet

6.2.2 - Structure

The program uses libusb to asynchronously read I/Q samples from the sampler. Using libusb
two buffers are queued for reading and so, when a buffer is full, a callback is fired to send
data through UDP, while the second buffer is being filled from the USB.

Another thread is spawned to wait for TCP connection and to send commands via USB, to the
sampler.

6.2.2.1 - The Threads

The program starts initializing the Sampler and setting the asynchronous transfer, then spawns
a thread for the TCP management, as shown in Listing 1.

#include <pthread.h>

typedef struct _threaddata_t {
long *freq;
int *atten;
int *filter;
char *sampling;
int port;
int *bytes_per_ sample;
int rescale;
} threaddata_t, *threaddata p;

threaddata_t threaddatal;
pthread t pthread0;
pthread_attr_t attr0;

// create thread that reads commands from tcp

pthread attr_ init(&attr0);

pthread create(&pthread0, &attr0, tcpManage, (void *)&threaddatal);
fprintf(stderr, "Tcp manage thread created\n");

Listing 1: Sampler management program spawning thread

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 28/122

6.2.2.2 - Asynchronous USB Reading

Even if the USB speed exceeds the needs of sample rate, it is impossible to manage read data
synchronously, because during the management time the data flow fills the USB buffer of the
device. This is the main reason we use asynchronous transfer of the data.

// prepare async transfer

transfer_inl = libusb_alloc_transfer(0);

if(!transfer_inl) {
fprintf(stderr, "libusb_alloc_transfer failed\n");
return 14;

}

transfer_in2 = libusb_alloc_transfer(0);

if(!transfer_in2) {
fprintf(stderr, "libusb_alloc_transfer failed\n");
return 15;

}

cbdatal.obj=0;
cbdatal.transfer=transfer_inl;
cbdatal.outbuf=pBufferla;
cbdatal.freq = &LOfreq;
cbdatal.sampling = &sampling;
cbdatal.atten = &atten;
cbdatal.filter = &filter;
cbdatal.sockfd=sockfd;
cbdatal.salen=salen;
cbdatal.sa=sa;
cbdatal.bytes_per_sample = &bytes_per_ sample;
cbdatal.rescale = rescale;
cbdata2.obj=1;

libusb_fill bulk transfer(transfer_ inl, dev_handle,
0x86, pBufferl, 512%24, cb_in, &cbdatal, 2000);
libusb_fill bulk transfer(transfer_ in2, dev_handle,
0x86, pBuffer2, 512+%24, cb_in, &cbdata2, 2000);
res = libusb_submit_ transfer(transfer_inl);
if(res) {
fprintf(stderr, "libusb_submit transfer failed (%d)\n", res);
return 16;
}
res = libusb_submit_ transfer(transfer_in2);
if(res) {
fprintf(stderr, "libusb_submit transfer failed (%d)\n", res);
return 17;
}
fprintf(stderr, "libusb_submit transfer succedeed\n");
fprintf(stderr, "SYN transfer starting\n");
// main loop
for(j=0, res=0; res==0 ; j++) {
res = libusb_handle_events_completed(ctx, NULL);
}

Listing 2: Prepare USB Async transfer

This transfer mode is universally considered to be “complex”, instead it is very simple,
needing only a preparation phase, as shown in Listing 2, where the buffer must be prepared
and declared, and the writing of the callback that will be fired once the buffer is full. Once all
is ready the transfer is fired for every buffer: the transfer to the first buffer begins. When the
first buffer is full, the callback is fired and the next buffer is filled.

Every time a callback is fired, it processes the data and, then, requests a new transfer.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 29/122

There can be two or more buffers, this mechanism only requests all the buffer transfers to be
fired at the beginning.

6.2.2.4 - UDP Sending Data

The data sending is accomplished by the callbacks, and is done using UDP. The UDP packet
is made as follows:

1. Counter value, to allow data loss finding by endpoint

2. Center frequency value, in Hz

3. Sample rate ratio (power of 2: 1=>192kS/s, 2=>384kS/s, 3=>768kS/s, 4=>1536kS/s,
5=>3072kS/s, 6=>6144kS7s)

Low pass filter status (0=off, 1=on)

5. Attenuator status (0=off, 1=on)

6. 128 I+Q samples: every sample is 32+32 bit floating point value converted from the
original USB received values of 24+24 bits (for values of ratio of 1,2,3,4,5) or 16+16
bits (where ratio value is 6).The values at point 2,3,4,5 are sent to let the receiving
program know the status of the sampler dynamically.

e

void cb_in(struct libusb_transfer * transfer) ({

switch(transfer->status) {
case LIBUSB_TRANSFER_COMPLETED:
if(*cbd-bytes_ per sample==2) {
c=recalc/32.0/1024.0;
for(j=0; j<transfer->actual length/sizeof(short); j++) {
rs=(short) ((uintlé6_t *)(transfer->buffer))[]];
cbd->outbuf[j]=rs*c;
}
} else {
c=recalc/2.0/1024.0/1024.0/1024.0;
for(j=0; j<transfer->actual length/sizeof(int); j++) {
ri=(int)((uint32_t *)(transfer->buffer))[]];
cbd->outbuf[j]=ri*c;
}
}
y=j*sizeof (float);
for(k=0; k<y; k+=1024) {

counter++;

*(long *)buffer = htonl(counter);

*(long *)(buffer+4) = htonl(*cbd->freq);
filler=(*cbd->atten) | (*cbd->filter)<<l |(*cbd->sampling)<<4;
*(short *)(buffer+8) = htons(filler);

memcpy(buffer+10, ((char *)(cbd-outbuf))+k,
y-k<1024?y-k:1024);

res=sendto(cbd->sockfd, buffer, y-k<1024?y-k+4:1034, O,
cbd->sa, cbd-salen);

if(res < 0) {
fprintf(stderr, "CB UDP error (%d)\n", res);

}

}

break;
case LIBUSB_TRANSFER_CANCELLED:

}

fflush(stderr);

transfer in = cbd->transfer;

res = libusb_submit_transfer(transfer in);

Listing 3: Sampler management program: Callback

(red:I/Q conversion, Blue:header, Violet:resubmit transfer, Green: UDP send)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

6.2.2.5 - TCP Server

30/122

This program implements also a very simple TCP server that accepts some commands useful

for controlling the sampler:
* central frequency,
* insertion of attenuator,
* insertion of lowpass (anti-aliasing) filter.
The commands are sent to the sampler using the same USB connection.
In the following Listing 4 we can see the whole TCP server implementation.

void *tcpManage(void *payload) {

int pfd;

struct sockaddr_in saddr;

int chfd;

struct hostent *host;

struct sockaddr_in cliaddr;

unsigned int clilun;

char buf[1024];

char *hp;

int j, n;

threaddata_p payl =(threaddata_p)payload;

int port = payl->port;

int loop;

char *retbuf;

pfd = socket(AF_INET, SOCK_STREAM, 0);

if(pfd == -1) {
fprintf(stderr, "Socket open error\n");
exit(1);

}

int opt = 1;

memset(&saddr, 0, sizeof(saddr));

saddr.sin_family = AF_INET;

saddr.sin_addr.s_addr = htonl(INADDR ANY);

saddr.sin_port = htons((unsigned short)port);

if(bind(pfd, (struct sockaddr *) &saddr, sizeof(saddr)) ==
fprintf(stderr, "Binding Error\n");
exit(2);

}

if(listen(pfd, 1) == -1) {
fprintf(stderr, "Listening Error\n");
exit(3);

}

fprintf(stderr, "Listening on port %d\n", port);
clilun = sizeof(cliaddr);
for(;5) {

if(chfd == -1) {
fprintf(stderr, "Accept-ing Error\n");
exit(4);

}

sizeof(cliaddr.sin_addr.s_addr), AF_INET);
if(thost) {
fprintf(stderr, "GetHostByName Error\n");

exit(5);

)

hp = inet ntoa(cliaddr.sin_addr);

if(thp) {
fprintf(stderr, "inet ntoa Error\n");
exit(6);

chfd = accept(pfd, (struct sockaddr *) &cliaddr, &clilun);

host = gethostbyaddr((const char *)&cliaddr.sin_addr.s_addr,

setsockopt (pfd,SOL_SOCKET,SO_REUSEADDR, (const void *)&opt, sizeof(int));

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 31/122

} else {
fprintf(stderr, "Connected by %s\n", hp);
}
for(loop=0;;) {
fprintf(stderr, "TCP loop\n");
memset(buf, 0, sizeof(buf));
for(j=0, n=0; j<sizeof(buf)-1 ; j+=n) {
n = read(chfd, buf+j, 1);
if(n==-1) {
break;
}
if(n==0) {
loop = 1;
break;
}
if(buf[j]=='\n') {
n = write(chfd, "\n", 1);

if(n == -1) {
fprintf(stderr, "TCP write Error\n");
exit(8);
}
break;
}
if(buf(jl==';"') {
retbuf = manageMessage(buf, j+1, payl);
n = write(chfd, retbuf, strlen(retbuf));
if(n == -1) {
fprintf(stderr, "TCP write Error\n");
exit(8);
}
break;
}
}
if(loop > 0) { break; }
if(n == -1) { break; }
}
n = close(chfd);
if(n == -1) {
fprintf(stderr, "TCP close Error\n");
exit(9);
}

fprintf(stderr, "TCP closed\n");

Listing 4: TCP server in sampler management Program

6.2.2.6 - TCP Commands Format

The commands accepted by the TCP server are:
AT: ATO; deselect attenuator, AT1; insert attenuator
LP: LPO; deselect low pass filter, LP1; insert low pass filter
CFxxxxxxXxXxxXx; where xxxxxxxxxxxx is the frequency in Hz
Fxxxxxxxxxxxx; where xxxxxxxxxxxx is the frequency in Hz
5. Axy; where x controls the attenuator and y controls the low pass filter
Commands AT, LP, CF are from the “CAT” standard, while commands A and F are for
compatibility with other programs.

AN

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 32/122

6.2.2.7 - Evaluations and Measures

The most critical path in the program is the callback function. The task of this function is to
send USB buffer data using UDP datagrams and to re-start the async transfer.

The length of the buffer is 512*24 bytes. At the given sample rate of 768kS/s the I/Q samples
length is 32+32 bits, so the buffer contains 512*24/(4+4) = 1536 samples, that means 2ms of
data.

If the structure is a simple “2 buffer swap” then the callback must complete its task in 2ms to
avoid data leakage in the USB buffer inside the sampler.

To evaluate the elaboration time of the callback some lines of code are inserted at the
beginning and at the end of the callback, as can be seen in Listing 5.

void cb_in(struct libusb_transfer * transfer) {
cbdata_p cbd;
int res;
int j, k, y;
float c;
short rs;
int ri;
short filler;
struct timeval start;
struct timeval stop;
static char buffer[1034];
static long counter=0;
struct libusb transfer * transfer in;
cbd = (cbdata p)transfer->user_data;
gettimeofday(&(start), NULL);
switch(transfer->status) {
// . .
}
fflush(stderr);
transfer in = cbd->transfer;
res = libusb submit_ transfer(transfer in);
if(res) {
fprintf(stderr, "libusb submit transfer failed (%d)\n", res);
}
gettimeofday(&(stop), NULL);
fprintf(stderr, "hf;%f;time= %f mSec\n",
start.tv_sec*1000+0.001*start.tv_usec,
(stop.tv_sec-start.tv_sec)*1000+0.001*(stop.tv_usec-start.tv_usec));

Listing 5: Callback with timing profiling instructions (red)

With the program running more than a minute of statistics has been caught and analyzed using
a simple spreadsheet. The data are divided into 8s segments and average, variance, max and
min of elaboration time for these segments are computed, as can be seen in Picture 16.

173371819.526 0.581 1.997999996 173379823.239 0.594 1.999000013
173371821.524 0.531 173379825.238 0.555

0.554375344 2.000048262 0.697847962 2.000928232

0.0005448 2.01833E-05 0.010014207 0.000816592

0.704 2.05400002 B 4186000019

0.513 1.972000003 0.392 1.342999995

27.71809833 34.87621149

Absolute time Duration Interval Absolute time Duration Interval

Picture 16: USB callback timing (green:avg & dev, red: too high max value)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 33/122

This statistic states two interesting things: the first is that the average processing time is less
than 1ms, the other is that sometimes the max value is well over the 2ms limit.

The first observation leads to the fact that the Raspberry PI2 is powerful enough to manage
the data flow, the second says that sometimes a data loss may occur.

A count of the values over the 2ms barrier leads to a loss event rate of 1 every approx 10s.
This could be considered a minor inconvenient, but we decided to avoid this by increasing the
number of buffers involved.

Since the highest value we detected is slightly over 4ms, it extends over 3 buffers, which
means that the requested number of buffers is 4.

The change is quite straightforward, as Listing 6 shows, because it doesn’t involve the
callback itself but only the number of buffers, their initialization, and the initial requests for
the asynchronous transfer.

After the change another test has been run. The test length was more than 20 minutes and the
processing times are higher than 2ms only in 4 cases, of which only 2 are higher than 3ms and
none more than 3.6 ms. This also confirms that the latency is untouched and is equal to 2ms.

unsigned char pBufferl1[512*24];
unsigned char pBuffer2[512*24];
unsigned char pBuffer3[512*24];
unsigned char pBuffer4[512*24];
struct libusb_ transfer *transfer inl;
struct libusb_ transfer *transfer_ in2;
struct libusb transfer *transfer in3;
struct libusb transfer *transfer in4;
float pBufferla[512*12];

float pBuffer2a[512*12];

float pBuffer3a[512*12];

float pBufferd4a[512*12];

cbdata_t cbdatal;

cbdata_t cbdata2;

cbdata_t cbdata3;

cbdata_t cbdata4;

cbdatal.obj=0;
cbdatal.transfer=transfer_ inl;
cbdatal.outbuf=pBufferla;
cbdatal.freq = &LOfreq;
cbdatal.sampling = &sampling;
cbdatal.atten = &atten;
cbdatal.filter = &filter;
cbdatal.sockfd=sockfd;
cbdatal.salen=salen;
cbdatal.sa=sa;
cbdatal.bytes_per_sample = &bytes_per_ sample;
cbdatal.rescale = rescale;
cbdata2.obj=1;
cbdata2.transfer=transfer_ in2;
cbdata2.outbuf=pBuffera;
cbdata2.freq = &LOfreq;
cbdata2.sampling = &sampling;
cbdata2.atten = &atten;
cbdata2.filter = &filter;
cbdata2.sockfd=sockfd;
cbdata2.salen=salen;
cbdata2.sa=sa;
cbdata2.bytes_per_sample = &bytes_per_ sample;

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 34/122

cbdata2.rescale = rescale;

cbdata3.obj=2;

cbdata3.transfer=transfer_in3;

cbdata3.outbuf=pBuffer3a;

cbdata3.freq = &LOfreq;

cbdata3.sampling = &sampling;

cbdata3.atten = &atten;

cbdata3.filter = &filter;

cbdata3.sockfd=sockfd;

cbdata3.salen=salen;

cbdata3.sa=sa;

cbdata3.bytes_per_ sample = &bytes_ per sample;

cbdata3.rescale = rescale;

cbdata4.obj=3;

cbdata4.transfer=transfer_in4;

cbdata4.outbuf=pBufferia;

cbdata4.freq = &LOfreq;

cbdata4.sampling = &sampling;

cbdatad4.atten = &atten;

cbdata4d4.filter = &filter;

cbdatad.sockfd=sockfd;

cbdata4d4.salen=salen;

cbdatad.sa=sa;

cbdata4.bytes_per_ sample = &bytes_ per sample;

cbdatad.rescale = rescale;

libusb_fill bulk transfer(transfer_ inl, dev_handle, 0x86, pBufferl,
512*24, cb_in, &cbdatal, 2000);

libusb_fill bulk transfer(transfer_ in2, dev_handle, 0x86, pBuffer2,
512*24, cb_in, &cbdata2, 2000);

libusb_fill bulk transfer(transfer in3, dev_handle, 0x86, pBuffer3, 512*24,
cb_in, &cbdata3, 2000);

libusb_fill bulk_ transfer(transfer in4, dev_handle, 0x86, pBuffer4, 512*24,
cb_in, &cbdata4, 2000);

res = libusb_submit_ transfer(transfer_inl);

if(res) {
fprintf(stderr, "libusb_submit_ transfer failed (%d)\n", res);
return 18;

res = libusb_submit_ transfer(transfer_in2);

if(res) {
fprintf(stderr, "libusb_submit transfer failed (%d)\n", res);
return 19;

res = libusb_submit_ transfer(transfer_in3);

if(res) {
fprintf(stderr, "libusb_submit transfer failed (%d)\n", res);
return 20;

res = libusb_submit_ transfer(transfer_in4);

if(res) {
fprintf(stderr, "libusb_submit transfer failed (%d)\n", res);
return 21;

Listing 6: The changes needed to avoid sporadic data losses

(red:added data and code)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

6.3 - Central Control Program

This program has the main purpose to feed the data arriving from the UDP flow to two
shared memories, so the “client” programs can read and process the data. This program
implements a WebSocket that sends FFT data to, and receives commands from, a browser.
This program also sends,using another TCP connection, to the “sampler management

program” the commands received, as shown in Picture 17.

* Thread “A”

—>

Receive UDP Packet

Fill buffer “A”

Fire Event “A”

—

Receive UDP Packet

Fill buffer “B”

Fire Event “B”

Wait Event “D”

— >

Wait Event “A”

i

Thread “B”

Compute FFT

—_—]

Web socket server

On connect
fire event “D”

Picture 17: The structure of the central control program

6.3.1 - Choices

The program uses two shared memories from which the client programs can read data. The
synchronization is done using condition variables also in shared memory.

The communication with the controlling browser is made using a WebSocket. The
implementation of the WebSocket is not exhaustive, but it is kept as simple as possible, to
acquire the benefits of WebSockets while at the same time keeping the implementation burden

as low as possible.

Thread “C”

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 36/122

6.3.2 - Structure

As shown in Listing 7, the program starts launching various threads responsible for the
various activities, such as the reception of the UDP datagrams:
e a thread is used to read UDP data and to store it into two different shared memories,
that implement a simple “circular buffer”;
* athread is used to implement a WebSocket that receives commands from a browser;
* a thread is used to compute FFT and to send this data to a browser using the
WebSocket;
* a thread is used to send commands received by WebSocket via TCP to the “sampler
management program”.

shm_id = shmget (payl->shm key, (BUFFERSIZE+sizeof(pthread cond t)+6)*2,
IPC_CREAT | S IRUSR | S_IWUSR | 0666);

if(shm_id==-1) {
fprintf(stderr, "erro allocating shmem %d %s\n", errno,

strerror(errno));fflush(stderr);

}

shm _condl = (char*) shmat (shm_id, 0, 0);

shmaddrl = shm _condl + sizeof(pthread cond t);

shm cond2 = shmaddrl + BUFFERSIZE + 6;

shmaddr2 = shm _cond2 + sizeof(pthread cond t);

fprintf(stderr, "Shared %x memory attached at address %p\n", shm _id, shm condl);

pthread condattr_init(&cond_attrl);

pthread condattr_init(&cond_attr2);

pthread condattr_setpshared(&cond_attrl, PTHREAD PROCESS_SHARED);

pthread condattr_setpshared(&cond_attr2, PTHREAD PROCESS_SHARED);

pthread cond_init((pthread cond_t *)shm condl, &cond_attrl);

pthread cond_init((pthread cond_t *)shm cond2, &cond_attr2);

pthread condattr_destroy(&cond_attrl);

pthread condattr_destroy(&cond_attr2);

Listing 7: Central control program: shared memory & condition variables creation

6.3.2.1 - UDP Reading and Shared Memories Filling

At the very beginning the activity starts creating four shared memory areas: two are the
implementation of “alternating buffers” and the other two are reserved for storing the related
conditional variables.

The core activity is quite simple: the thread starts reading UDP packets. A simple sanity
control is done on the sequence counter at the beginning of every packet, signaling packet
loss. Then the data is copied into the “current” shared memory until this became full. When
this occurs the relative conditional variable is fired and the other shared memory became
“current”.

One of the two alternating buffer is tied to the FFT: when it is full an appropriate conditional
variable is fired to start the FFT computation. Since FFT is needed only a few times a second,
no special effort is done to optimizing the operations.

An overview of these operations can be seen in Listing 8.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

37/122

for(;;) {
a=l-a;
if(a==1) {
con = payl->con; buff=payl->buff=payl->buf a;
shm cond=shm condl; shmaddr=shmaddrl;

} else {
con=NULL;
buff=NULL;

shm cond=shm cond2;
shmaddr=shmaddr?2;

}

if(buff) {
memset(buff, 0, BUFFERSIZE);

}
for(j=0, *lung=0; j<BUFFERSIZE; Jj+=res-10) {

res = recvfrom(sfd, recvBuffer, 1034, 0, (struct sockaddr *)

&cliaddr, &clilen);
if(buff) {
memcpy(buff+j, recvBuffer+10, res-10);
}
memcpy((char *)payl->freq, recvBuffer+4, 4);
memcpy((char *)payl->att lowpass_rate, recvBuffer+8, 2);
memcpy(shmaddr, recvBuffer+4, 6);
memcpy(shmaddr+6+j, recvBuffer+10, res-10);

tempCounter = ntohl (*(long *)recvBuffer);
counter++;
if(counter!=tempCounter) {

fprintf(stderr,
"Counter (%1d) differs from previous (%1d)\n",
counter, tempCounter);

counter=tempCounter;

}

*lung += res-10;

if (res == -1) {
fprintf(stderr,"Recvfrom Error\n");
exit(10);

}

}

pthread cond_broadcast((pthread cond t *)shm cond);
if(con) {
pthread cond _signal(con);

Listing 8: Central control program: UDP reading and shared memory filling

(red: packet sequence control)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 38/122

6.3.2.2 - WebSocket

WebSocket is a quite new applicative protocol, built over TCP, and similar to HTTP, from
which it inherits the header structure. Picture 18 shows a schematics of how it works.

HTTP >

Hey can we upgrade to websocket?
Here are some magic keys,

< T Q)
Sure... | mangled your keys, here they are.

MNow this connection is websocket protocol!

er

Websocket
0x00 <UTF8 payload= Oxff > L

Websocket
O ...(0x00 <UTF8 payload=> 0xff w
—

Websocket

0x00 0xff (Please close now)

>

Picture 18: WebSocket life cycle

https://warmcat.com/libwebsockets/2010/11/01/libwebsockets-html5-websocket-server-library-in-c.html

Here there is a short illustration of our implementation: the relative thread start listening to a
TCP socket. A simple state machine is used to verify that the needed headers are properly
received and to send a proper response. In this process one important thing is to manage in the
right way a “challenge-response” authentication done via the “Sec-Websocket-Key”/”Sec-
Websocket-Accept” headers. Picture 19 shows how this challenge-response authentication
must be done, alongside with values useful for testing the implementation, Listing 9 depicts
the operations done in the program to initialize the WebSocket.

When all the headers are collected and sent, the applicative connection is established and the
data flow can occur. In this moment the program clears a condition variable that enables the
FFT operations and the beginning of decoding the commands arriving from the browser.

The decoding of the commands also requires some operations: the related theory can also be
found in the appendix relative to the WebSockets. We chose to manage only short packets and
not decode their content but only to pass them to the TCP thread. Once a command is received
the thread fires a condition variable that triggers the TCP command sending thread and then
continues to listen for other commands.

The reception of the commands is done in a way that lets a new “WebSocket connection
request” to stop the current socket and launch a new one, so in case of a browser hiccup it is
straightforward to restore the connection.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 39/122

Client handshake Request

GET /chat HTTP/1.1

Host: example.com:8000

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBszZSBub25jzQ==
Sec-WebSocket-Version: 13

Server handshake response

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+x00=

s3pPLMBiTxaQ9kYGzzhZRbK+x00= is obtainbed computing the value of shal of the string obtained
contatenating dGh1IHNhbXBsZSBub25jZQ== with 258EAFA5-E914-47DA-95CA-C5ABODC85B11
shal(“dGhlIHNhbXBsZSBub25jzQ==258EAFA5-E914-47DA-95CA-C5ABODC85B11")

Picture 19: WebSocket initial exchange example

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_ API/Writing WebSocket_servers

pfd = socket(AF_INET, SOCK_STREAM, 0);
if(pfd == -1) { fprintf(stderr, "Socket open error\n"); exit(7); }
int opt = 1;
setsockopt(pfd, SOL_SOCKET, SO_REUSEADDR, (const void *)&opt , sizeof(int));
memset(&saddr, 0, sizeof(saddr));
saddr.sin_family = AF INET;
saddr.sin_addr.s_addr = htonl(INADDR ANY);
saddr.sin_port = htons((unsigned short)payl->port);
if(bind(pfd, (struct sockaddr *) &saddr, sizeof(saddr)) == -1) {
fprintf(stderr, "Binding Error\n"); exit(8);
}
if(listen(pfd, 1)==-1) { fprintf(stderr, "Listening Error\n"); exit(10); }
clilun = sizeof(cliaddr);
for(status=0,pp=NULL; ; pp=NULL) {
memset(mybuf, 0, sizeof(mybuf));
if(pp==NULL) { pp = fgets(mybuf, sizeof(mybuf), bchfd); }
if(!pp && errno) { fprintf(stderr, "TCP read Error\n"); exit(15); }
if(!pp) { continue; }
if(mybuf[strlen(mybuf)-1]=='\n') {
for(j=0; Jj<XtNumber (requestHeader); j++) {
if (!strncmp(mybuf,requestHeader[j],strlen(requestHeader[j]))){
status++;
if (!strncmp(mybuf,keyHeader,strlen(keyHeader))) {
strcpy(keys, mybuf+strlen(keyHeader));
if(keys[strlen(keys)-1]=='\r' ||
keys[strlen(keys)-1]1=='\n'){
keys[strlen(keys)-1]=0;
}
if(keys[strlen(keys)-1]=='\r' ||
keys[strlen(keys)-1]1=='\n'){
keys[strlen(keys)-1]1=0;
}
fprintf(stderr, "Caught key %s\n", keys);

}
¥
if(strlen(mybuf)<=2) {

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 40/122

status++;
fprintf(stderr, "status advanced %d\n", status);
}
}
if(status >= XtNumber (requestHeader)+1l) {
break;
}

}
n=fprintf(bchfd, "HTTP/1.1 101 Switching Protocols\r\n");

n=fprintf(bchfd, "Upgrade: websocket\r\n");

n=fprintf(bchfd, "Connection: Upgrade\r\n");

sprintf(mybuf, "%s%s", keys, "258EAFA5-E914-47DA-95CA-C5ABODC85B11");
memset(keys, 0, sizeof(keys));

SHA1((unsigned const char *)mybuf, strlen(mybuf), (unsigned char *)keys);
pp=g_base64 encode((const guchar *)keys, strlen(keys));

memset(keys, 0, sizeof(keys));

strcpy(keys, (const char *)pp);

g_free(pp);

n=fprintf(bchfd, "Sec-WebSocket-Accept: %s\r\n", keys);

n=fprintf(bchfd, "Sec-WebSocket-Protocol: chat\r\n\r\n");

fflush(bchfd);

Listing 9: Central control program: WebSocket initialization

(red: request header management, blue: secret key computation)

1 0 1 2 3
2 012345670123456701234567012345¢67

3 B e B B e +
4 |FIR|R|R| opcode|M| Payload len | Extended payload length |
5 | IIIsIsIs] (4) |A| (M I (16/64) I
6 IN|V|V|V] |S| | (if payload len==126/127)

701 11]12]3] [K| I I
8 B e e B L T T T
9 4 5 6 7

10 R T T T
11 | Extended payload length continued, if payload len == 127

12 T T e +
13 8 S 10 11

14 L T T R S e E +
15 | |Masking-key, i1f MASK set to 1 |
16 R i I i +
17 12 13 14 15

18 R e R e +
19 | Masking-key (continued) | Payload Data

2 1 I (PRSI IS AT S NSNS R G I A = IS I S N
21 Payload Data continued

23 | Payload Data continued

e e e i R e e e i

Picture 20: WebSocket frame structure

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_ API/Writing WebSocket_servers

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 41/122

To communicate the WebSocket uses “frames” that have the structure outlined in Picture 20.
They sends data encoding them into frames that must be decoded.

As Listing 10 shows, the WebSocket thread receives the frames, extracts commands, saves
them into a buffer, and then signals to the TCP thread to send them to the remote application.

for(isFirst=1l;;) {
memset(mybuf, 0, sizeof(mybuf));
n = read(chfd, mybuf, sizeof(mybuf));

if(n<l) { fprintf(stderr, "TCP read Error\n"); break; }
if(!n) { fprintf(stderr, "TCP read 0 bytes \n"); continue; }
fprintf(stderr, "Received %d bytes : ", n); fprintf(stderr, "\n");

// We only manage a final, text, masked, short message
if((unsigned char)mybuf[0]==0x81) {
j=mybuf[1]&0x7F;
if(j==n-6) {
for(n=0; n<j;) {
for(k=0; k<4 && n<j; k++, n+t+) {
mybuf[n+6]"=mybuf[k+2];

}
}
if(isFirst==1) {
isFirst++;
if(strcmp(mybuf+6, payl->passphrase)) {
fprintf(stderr,
"required >%s< differ from >%s<\n",
payl->passphrase, mybuf+6);
*payl->outfile=0;
pp=mybuf;
status=0;
break;
¥
} else {
strcpy(payl->buf, mybuf+6);
pthread cond signal(payl->con_a);
fprintf(stderr, "%s\n", mybuf+6);
}
} else {

fprintf(stderr,
"wrong message length: is %d instead of %d\n",

j, n-6);
*payl->outfile=0;
pp=mybuf;
status=0;
break;
}
} else {

fprintf(stderr, "wrong message type: %x\n", mybuf[0]);
*payl->outfile=0;

pp=mybuf;

status=0;

break;

Listing 10: Central control program: WebSocket frame reception

(red: password authentication, blue: data received signal)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

6.3.2.3 - TCP to the Remote Sampler Management Program

42/122

As can be seen in Listing 11, this thread is a classic TCP client program that starts trying to
connect the remote endpoint and then waits for a condition variable that signals the arrival of
commands to send these commands to the endpoints. If a transmission error occurs, the
connection is stopped and a new one is attempted. This has been proven successful also in the

case of a restart of the remote computer.

for(;7) {
sfd = socket(AF_INET, SOCK_STREAM, 0);
if(sfd == -1) { fprintf(stderr, "Socket error\n"); exit(1); }
fprintf(stderr, "Socket for TCP created\n");
server = gethostbyname(hostname);

if (server == NULL) { fprintf(stderr, "
ERROR, no such host as %s\n", hostname); exit(2); }
memset(&saddr, 0, sizeof(saddr));

saddr.sin_family = AF_INET;

saddr.sin_addr.s_addr = htonl(INADDR ANY);

memmove((char *)&saddr.sin_addr.s_addr, (char *)server->h_addr,
server->h length);

saddr.sin_port = htons((unsigned short)port);

if(connect(sfd, (struct sockaddr *)&saddr, sizeof(saddr)) == -1)
fprintf(stderr, "Connect Error\n");
sleep(5);
continue;

}

connected = 1;

for(;;) {

pthread cond wait(payl->con, payl-mut);
fprintf(stderr, "message received: <%s>\n", payl->buf);
n = write(sfd, payl->buf, strlen(payl->buf));

if(n == -1) {
fprintf(stderr, "TCP write Error\n");
exit(5);

}

for(closure = 0;;) {

memset(buf, 0, sizeof(buf));
for(j=0, n=0; ; j++) {
n = read(sfd, buf+j, 1);

if(n == 0) { connected = 0; break; }
if(n == -1) { break; }
if(buf[jl=='\n') { closure = 1; break; }
if(buf[j]==';') { break; }
}
if(connected == 0) { break; }
if(closure == 1) { break; }
}
if(connected == 0) { break; }

}

}
close(sfd);

Listing 11: Central control program: TCP command sending

{

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 43/122

6.3.2.4 - FFT Computing

The thread that computes FFT, shown in Listing 13, prepares all the trigonometric coefficients
(see Listing 12) and waits for the WebSocket thread to signal that the connection is
established, then it waits for the condition variable that signals that the UDP reception has
some data ready for processing. When the FFT has been processed, the data is transmitted
using the WebSocket and the thread waits for some time, to void supercharging the browser.

fftr = calloc(N, sizeof(double));

if(f£ftr == NULL) {
fprintf(stderr, "error allocating fftr buffer");
exit(11);

}

ffti = calloc(N, sizeof(double));

if(£fti == NULL) {
fprintf(stderr, "error allocating ffti buffer");
exit(12);

}

fftout = calloc(N, sizeof(char));

if(fftout == NULL) {
fprintf(stderr, "error allocating fftout buffer");
exit(13);

}

co = calloc(N/2, sizeof(double));

if(co == NULL) {
fprintf(stderr, "error allocating co buffer");
exit(14);

}

si = calloc(N/2, sizeof(double));

if(si == NULL) {
fprintf(stderr, "error allocating si buffer");
exit(15);

}

coeff = calloc(N, sizeof(double));

if(coeff == NULL) {
fprintf(stderr, "error allocating coeff buffer");
exit(16);

}

// coeff table initialization
for(j=1; j<N; j++) {
coeff[j]=0.35875-0.48829*cos (2*pi*j/(N-1))+
0.14128*%cos(4*pi*j/(N-1))-0.01168*cos(6*pi*j/(N-1));

}
// sin table initialization
m = N/2;
p = 10;
col = cos(pi/m);
sil = -sin(pi/m);
co[0] = 1;
si[0] = 0;
for(j=1; j<m; j++) {
co[j] = col * co[j-1] - sil * si[j-17];

si[j] = sil * co[]j-1] + col * si[j-11;

Listing 12: Central control program: FFT coefficient precomputation

(red: Blackman-Harris window coefficient)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 44/122

Blackman-Harris window Fourier transform

0 T
-10
-20
-30
-40
-50
-60
-70
-80
-90

-100

-110

-120

130 IR, |

0] N-1 -40-30-20-10 0 10 20 30 40
samples bins

decibels

Picture 21: Blackman-Harris window

Before computing the FFT it is mandatory to shape the samples to avoid spectral losses; this
is done using the known Blackman-Harris window, shown in Picture 21, to shape the
coefficients according to the formula in Picture 22:

w(n) = ag — ay cos 2mn + a3 cos A — ag cos bmn
e W PTA\N -1 PTRAN -1

ag = 0.35875; a; = 0.48829; ao = 0.14128; a3 = 0.01168

Picture 22: Blackman-Harris windowing function

https://en.wikipedia.org/wiki/Window_function

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 45/122

pthread cond wait(payl->con, payl->mut);

// Read and mask input data

for(j=0; Jj<N; j++) {
fftr[j]=((float *)payl->buf)[2*j]*coeff[]j];
ffti[j]=((float *)payl->buf)[2*j+1]*coeff[]];

}
m = N/2;
p = 10;

// FFT Compute
for(j=0,ng=1,md=m; j<p; Jj++) {
for(ind=0, ig=0; ig<ng; ig++) {
for(i=0, k=0; i<md; i++) {

il=ind+i;
i2=il+md;
fftdr = fftr[il] - fftr[i2];
fftdi = £fti[il] - f££fti[i2];

fftr[il] = fftr[il] + fftr[i2];
ffti[il] = ££fti[il] + ££fti[i2j];
fftr[(i2] = fftdr * co[k] - fftdi * si[k];
ffti[i2] = fftdr * si[k] + fftdi * co[k];
k += ng;
}
ind += md*2;
}
md >>= 1;
ng <<= 1;

}
// Coefficients reordering
for(j=0; J<N; j++) {
jd=3;
k=0;
kp=m;
for(i=1; i<=p; i++) {
k =k + (jd-(jd/2)*2)*kp;

jd >>= 1;
kp >>= 1;

}

if(k>3) {
fftdr = fftr([j];
fftdi = ffti[]j];
fftr[(j] = fftr[k];
ffti[j] = f£fti[k];
fftr(k] = fftdr;
ffti(k] = fftdi;

}

}
// Absolute value
for(j=0; j<N; j++) {
fftr([j] fftr[(j]/m;
ffti[j] ffti[j]/m;
fftr[j] = sqrt(fftr[j] * fftr[j] + ££ti[j] * ££ti[j]);
val=20*1loglO(fftr[j]);
if(val < -200) {
val=-200;

}
fftout[j]=200+(char)val;

Listing 13: Central control program: FFT computing

(red: Blackman-Harris window, blue: FFT, green: coefficient reordering)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 46/122

The thread that computes FFT data sends this data using WebSocket. Since the antialiasing
has an effect on the borders of the coefficients, not all of them are sent, and the overall
bandwidth is limited to to 896/1024 of the sample rate (using 768kS/s the bandwidth is
672kHz).

Also the values are limited to the range from -200dBm to 0dBm, in fact -200dBm is a value
never reached and values over 0dBm are so big that is is not important how much over 0dBm
they are.

When the FFT thread sends the FFT values it compiles a WebSocket frame as can be seen in
Listing 14, placing some informations before the FFT values.

The first of these informations are related to the WebSocket protocol, and are frame type,
mask, and length, followed by central frequency, sample rate coefficient, low pass filter status
and attenuator status, as depicted in Picture 23.

buf[0]=0x82;
buf[1l]=0x7e;
buf[2]=0x03;
buf[3]=0x86;
memcpy(buf+4, payl->freq, 4);
memcpy(buf+8, payl->att_lowpass_rate, 2);
memcpy(buf+10, fftout+512+64, 512-64);
memcpy(buf+512+10-64, fftout, 512-64);
if(*payl->outfile) {
j=write(*payl->outfile, buf, 1024+10-128);
if(3<0) {
fprintf(stderr, "sent error %d %s\n", errno, strerror(errno));
fflush(stderr);
}
}
usleep(100000);

Listing 14: Central control program: the composition of the WebSocket FFT frame

Frame type: 0x82

No mask, frame length>125 : Ox7e

Hi nibble fram length: 0x03

Lo nibble fram length: 0x86

Central frequency (long)

Speed Ipf | att

1st FFT sample

896th FFT sample (float)

Picture 23: The WebSocket FFT frame

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 47/122

6.3.3 - Evaluations and Measures

The most critical path in the program is the management of the incoming UDP packets. To
track the possible packet loss, the software includes a packet tracking feature that compares a
generated serial number with the incoming packet serial included in every packet sent by the
previous program (see Listing 15). The local counter is simply initialized to zero, triggering
an error at the very first cycle. Since the counter is aligned at every error, this aligns the
counter and, if all goes right, no other errors occur. Note that there is no limit to numbers: the
values are tested for equality so overflow is not a problem, the counters overflow at the same
time. A minor glitch is the possibility to have an erroneous count of packet loss, in case of
data loss during the counter overflow phase.

for(j=0, *lung=0; Jj<BUFFERSIZE; j+=res-10) {
res=recvfrom(sfd, recvBuffer, 1034, O,
(struct sockaddr *)&cliaddr, &clilen);
if(buff) {
memcpy(buff+j, recvBuffer+10, res-10);
¥
memcpy((char *)payl->freq, recvBuffer+4, 4);
memcpy((char *)payl->att_ lowpass_rate, recvBuffer+8, 2);
memcpy(shmaddr, recvBuffer+4, 6);
memcpy(shmaddr+6+j, recvBuffer+10, res-10);
tempCounter = ntohl (*(long *)recvBuffer);
counter++;
if(counter!=tempCounter) {
fprintf(stderr,
"Counter (%1d) differs from received counter (%1d)\n",
counter, tempCounter);
counter=tempCounter;

}

*lung += res-10;

if (res == -1) {
fprintf(stderr,"Recvfrom Error\n");
exit(10);

Listing 15: Central control program: the data loss detecting structure (red)

During hours of operations not a single packet loss has been detected, so no further
investigation is needed.

Another interesting thing is the network load. This load has been measured using nload, a
program that estimates the network traffic, as can be seen in Picture 24.

The input data transfer value can be evaluated to 768kS/s multiplied by 64 bit/Sample
multiplied by 1034/1024 (due to our headers overhead) and by 1076/0134 (due to the IP and
UDP headers overhead), i.e. 51.648 Mbit/s. As can be seen from the program output, the
measured data is 51.653 Mbit/sec, very similar.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 48/122

Terminale - giovanni@mir: ~

File Modifica Visualizza Terminale Schede Aiuto

Device eth® [192.168.1.116] (1/3): -

Incoming:

T e B i i i g i

SR S S S S

SR RS R S R S S S

A A S S A i

B R B e e o

SR R R R e Curr: 51646368.00 Bit/s
SR . Avg: 51653192.00 Bit/s
SR . Min: 51604280.00 Bit/s
R S A S . Max: 51700856.00 Bit/s
SR . TE L 22.69 GByte
OQutgoing:

I
Curr: 77128.00 Bit/s
Avg: 74816.00 Bit/s
Min: 69328.00 Bit/s
Max: 105936.00 Bit/s
Ttl: 1023.21 MBytel] >

Picture 24: Trdffic on the server measured by nload

The same computation can be done for the output: the program sends data for FFT every 0.1s,
the total data sent has a length of 906 bytes plus 66 bytes of headers, for a total of 77760 bit/s,
the value shown by the program is a little bit smaller (less than 1%), because the timing of
0.1s is not precise since the fft computation time must be added.

The last interesting time to be measured is the fft computation time. The technique used is the
same used for other time measurements, producing an output on the standard error (see
Listing 16 for details).

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

49/122

for(;7) {

pthread cond wait(payl->con, payl->mut);

// Time measurement

gettimeofday(&start, NULL);

// Read input data

for(j=0; J<N; j++) {
fftr[jl=((float *)payl->buf)[2*j]l*coeff[]];
ffti[jl=((float *)payl->buf)[2*j+1]*coeff[]];

}

// Bbsolute value
for(j=0; j<N; j++) {

val=20*1loglO(fftr[j]);
if(val < =200) {
val=-200;
}
fftout[j]=200+(char)val;
}
// time measurement
gettimeofday(&stop, NULL);
fprintf(stderr, "FFT time= %f mSec\n",

Listing 16: The instructions that measure the fft computation time (red)

fftr[(j] = £ftr[jl1/m;
ffti[j] = ££ti[j1/m;
fftr[j] = sqrt(fftr[j] * fftr[j] + ££ti[j] * ££ti[j]);

(stop.tv_sec-start.tv_sec)*1000+0.001*(stop.tv_usec-start.tv_usec));

On a round of more than 300 measurements the average value is 0.6ms, with a minimum of

0.21ms and a maximum of 0.91ms.

The average load of the CPU is about 3% on a quad-core hyperthreaded 2.2 GHz i7-2670QM
CPU; the measurement has been done with the xfce4-cpugraph-plugin, this figure includes

also the system load.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 50/122

6.4 - Control Browser

The control browser connects to the central control program using WebSocket protocol. It
receives FFT data and displays spectrogram and the corresponding waterfall to assist the
settings operations as can be seen in Picture 25. It also offers a simple interface to set up
central frequency, attenuator, and lowpass filter of the remote sampler.

P Py A

?’fe"‘*lf‘w‘m*v“"“ﬁfg‘*-l* Pt)

Low Pass Attenuator 14200000 160m 80m 40m 30m 20m 17m 15m 12m 10m < >

Picture 25: The control browser in action

6.4.1 - Choices

The user interface is built within a browser. This decision was made to offer the highest
flexibility to the user, because when using a browser there are no limits to the platform and
the location of the client interface. Using browsers implies the use of the network, and this is
in line with the overall philosophy of the project.

The programming language used for the client in the browser is JavaScript. Since JavaScript
is interpreted in a single thread in the browser, a Web Worker is used to allow concurrency.
The communications are done using WebSockets and the rendering of the waterfall is done
using canvas and the graphical primitives for JavaScript.

The communications between the main thread and the WebSocket worker thread take place
with messages. A diagram of the operations can be seen in Picture 26.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 51/122

Web socket frame received

Send Message

Send Web socket frame

Message received

Low pass filter FFT |data
Send Message

Events
from button Message received
and mouse

Synchronous queue

Draw FFT
on canvas

Picture 26: The control browser application structure

FC, Att,

6.4.2 - Structure

The page is a mix of HTML for the design of the page, and JavaScript for the automation.
When the page is loaded, a Web Worker is started and, inside this worker, a WebSocket is
opened. The main thread event loop receives both interface events (from buttons, for
example), and messages from the worker. The interface events result in sending commands
through the WebSocket and the messages from the worker usually fire canvas redrawing.

6.4.2.1 - Web Worker and WebSocket

As can be seen in Listing 17, using Web Worker is straightforward: the things to be provided
are mainly the synchronization between the thread and the main thread. This synchronization
could be done using messages. The function self.postMessage() is used to send the data
received to the main thread. This function is used within the onmessage() callback attached to
the WebSocket.

JavaScript has a very powerful implementation of WebSockets that can be opened with a
single line command referencing the URL. For our purposes it is important to define the
binaryType of the WebSocket as ‘arraybuffer’ in order to have the data usable as an array.
Also the callback can be very simple, containing only a call to the postMessage with the data
received by the callback itself.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 52/122

var mySocket = null;
var inited=0;
mySocket= new WebSocket("ws://192.168.1.116:6666/fft", "chat");
mySocket.binaryType='arraybuffer';
mySocket.onopen=function(event){
mySocket.send("parapiglia");
inited=1;
}
mySocket.onclose=function(event){
if(inited) {
console.log("WebSocket error",event);
} else {
console.log("WebSocket not starting",event);
}
}
mySocket.onmessage=function(event){
self.postMessage(event.data);
}
self.onmessage=function(message) {
console.log("message", message.data);
if(inited == 1) {
mySocket.send(message.data);

Listing 17: The Web Worker with the WebSocket implemented

(red: password sent as first frame)

6.4.2.2 - Canvas

<style>

.layer { position: absolute; }

.scale { position: absolute; top:200px; }

.nolayer { position: absolute; top:240px; }

.cmds { position: absolute; top:450px; }

#myFFTline { z-index: 4 }

#myFFTgrid { z-index: 3 }

#myFFTdata { z-index: 2 }

#myFFTbkground { z-index: 1 }

</style>

<BODY bgcolor="Black" onload="setBackground();caio();"><TABLE><TR><TD>

<canvas class="layer" id="myFFTgrid" width="896" height="200" style="border:1lpx
solid #000000;"></canvas>

<canvas class="layer" id="myFFTbkground" width="896" height="200"
style="border:1px solid #000000;"></canvas>

<canvas class="layer" id="myFFTdata" width="896" height="200" style="border:1lpx
solid #000000;"></canvas>

<canvas class="layer" id="myFFTline" width="896" height="200" style="border:1lpx
solid #000000;"></canvas>

<canvas class="scale" id="scale" width="896" height="40" style="border:1lpx solid
#000000; "></canvas>

<canvas class="nolayer" id="myWfall" width="896" height="200" style="border:1lpx
solid #000000;"></canvas>

</TD></TR></TABLE><BODY>

Listing 18: The canvas definition

(red: layering the areas)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 53/122

In this application the graphic interface is the biggest part, both because it is what he user
looks at, and for the weight of the computations involved.

At a first sight two canvas are shown, one for the spectrogram, and the other for the waterfall.
On Listing 18 it can be seen their definitions. Both canvas contain useful informations, and
while the spectrogram is focused on the amplitude of every single part of the spectrum, the
waterfall is focused on the history of the signals. Many elements have to be drawn: a
background, some reference lines, the spectrogram, an underlaying filled area. Since all these
elements require work they are divided into static (background, reference lines) and dynamic
(spectrogram, filled area) elements, in such a way that only the dynamic elements are redrawn
every time, while the static elements are drawn only at loading time. Listing 19 shows the
drawing of the static elements, Listing 20 shows the drawing of the dynamic elements.

function setBackground () {
var wfall = document.getElementById("myWfall");
var ctz = wfall.getContext("2d");
ctz.fillStyle="#0067A7";
ctz.fillRect(0, 0, 896, 200);
var fft = document.getElementById("myFFTbkground");
var ctx = fft.getContext("2d");
ctx.clearRect(0, 0, fft.width, fft.height);
var lingrad = ctx.createLinearGradient(0, 0, 0, 200);
lingrad.addColorStop(0, '#0089C9');
lingrad.addColorStop(0.5, '#000000');
ctx.fillStyle = lingrad;
ctx.fillRect(0, 0, 896, 200);
ctx.beginPath();
ctx.lineWidth=1;
ctx.strokeStyle="#0067A7";
ctx.setLineDash([5, 0]);
ctx.moveTo(0, 0);
ctx.lineTo(0, 200);
ctx.moveTo(896, 0);
ctx.lineTo(896, 200);
ctx.stroke();
fft = document.getElementById("myFFTgrid");
ctx = fft.getContext("2d");
ctx.beginPath();
ctx.lineWidth=1;
ctx.strokeStyle="#ffffff";
ctx.setLineDash([5, 2]);
for(j=20; j<fft.height; j+=20) {
ctx.moveTo(42, j);
ctx.lineTo(896, j);
}
for(j=46; j<fft.width; j+=67) {
ctx.moveTo(j, 200);
ctx.lineTo(j, 0);
}
ctx.stroke();
ctx.textAlign="right";
ctx.font="9px Arial";
for(j=20; j<fft.height; j+=20) {
ctx.fillStyle="white";
ctx.fillText(-j+"dBm", 40, j+3);

Listing 19: Spectrogram background drawing

(red: linear gradient, blue: grid, green: level reference)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 54/122

The elements are organized in overlapping layers, with the background as the lower one in the
z-order, followed by filled area, reference lines, and, over all, the spectrogram; to cope with
this four different elements, with their proper z-index, are defined using a cascade style sheet.

var hid = document.createElement('canvas');
hid.width = points;
hid.height = 200;
var ctx = hid.getContext("2d");
var fft = document.getElementById(fftname);
var ctz = fft.getContext("2d");
var wfall = document.getElementById(wfallname);
var cty = wfall.getContext("2d");
ctz.clearRect(0, 0, fft.width, fft.height);
ctx.clearRect(0, 0, fft.width, fft.height);
ctx.lineWidth=1;
ctx.setLineDash([4, 0]);
ctx.beginPath();
ctx.moveTo(points, 200);
ctx.lineTo(0, 200);
for(j=0; j<arr.length; j++) {
ctx.lineTo(j, -arr[j]);
}
ctx.fillStyle="#0067A7";
ctx.closePath();
ctx.fill();
ctx.stroke();
ctz.drawImage(hid, 0, 0);
ctz.beginPath();
ctz.lineWidth=2;
ctz.strokeStyle="#0067A7";
ctz.setLineDash([5, 0]);
ctz.moveTo(895, 0);
ctz.lineTo(895, 199);
ctz.stroke();
fft = document.getElementById(fftlinename);
ctz = fft.getContext("2d");
ctx.clearRect(0, 0, fft.width, fft.height);
ctz.clearRect(0, 0, fft.width, fft.height);
ctx.beginPath();
ctx.lineWidth=1;
ctx.setLineDash([4, 0]);
ctx.lineCap='Round';
ctx.strokeStyle="#ffffff";
var tot=0;
for(j=0; j<arr.length; j++) {
ctx.lineTo(j, -arr[j]);
tot=parseInt(arr[j])+parselInt(tot);
}
tot=tot/arr.length;
ctx.stroke();
ctz.drawImage(hid, 0, 0);

Listing 20: Spectrogram drawing

(red: area under the graph, blue: graph)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 55/122

6.4.2.3 - Waterfall

As depicted in Listing 21, the waterfall is drawn by copying most of the area and then tracing
only the last line. To represent the levels a “relative” approach has been chosen. The levels are
represented with a level of color going from black to blue in the range from medium level -5
dB to medium level +5 dB and from blue to white in the range from medium level +5 dB to
medium level +15 dB. Thus focusing on the easiness to extract that particular signal from the
base “noise” of the band.

Thr R color = ["0.0", "0.0", "0.0", "255.0", "255.0"];
Thr G _color = ["0.0", "0.0", "0.0", "255.0", "255.0"];
Thr B color = ["0.0", "0.0", "255.0", "255.0", "255.0"];

var wfall = document.getElementById(wfallname);
var cty = wfall.getContext("2d");
var image = cty.getImageData(0, 1, points, 197);
cty.putImageData(image, 0, 2);
cty.lineWidth=1;
var imageData = cty.createImageData(points, 1);
for(j=1; j<arr.length-1; j++) {
if(arr[j] > tot+15) { vj=3; dx=delta_x=1;
else if (arr[]j] > tot+5) { vj=2; dx=arr[j]-tot-5; delta_ x=10;
else if(arr[J]> tot-5) { vj=1; dx=arr[j]-tot+5; delta x=10;
else { vj=0; dx=140+parselnt(arr[]]); delta x=tot+130; }
(Thr_R_color[vj+1]-Thr R color[vj])/delta_ x;
(m * dx + Thr_R color[vj]);
= (Thr_G_color[vj+1]-Thr_G color[vj])/delta_x;
= (m * dx + Thr_G_color([vjl]);
= (Thr_B _color[vj+1]-Thr B color[vj])/delta_x;
= (m * dx + Thr_B color([vjl]);
imageData.data[4*j]=r;
imageData.data[4*j+1]=g;
imageData.data[4*j+2]=b;
imageData.data[4*j+3]=255;

oB8QB8RBwww
[

}

imageData.data[(arr.length-2)*4] = 0x00;
imageData.data[(arr.length-2)*4+1] = 0x67;
imageData.data[(arr.length-2)*4+2] = 0xA7;
imageData.data[(arr.length-2)*4+3] = OxFF;

cty.putImageData(imageData, 1, 1);
Listing 21: Waterfall drawing

(red: waterfall scroll copying area)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 56/122

6.4.2.4 - Buttons

To allow the user to manage the sampler some buttons and a text input are provided. Two of
the buttons are used to switch on and off the attenuator and the low pass filter. The other
buttons are used to set up the frequency. All the actions are performed by the means of
functions that set up the corresponding variable and then send a message with the complete
setup command to the WebSocket. In Listing 22 it can be seen both buttons definition, events
handling, and posting message to the Web Worker.

<script>

function setatt() { att=l-readatt; lp=readlp; set(); }
function setlp() { lp=1l-readlp; att=readatt; set(); }
function up() {
freq=freq+250000;
if(freq > 30000000) { freg= 30000000; }
set();
}
function down() {
freq=freq-250000;
if(freg<250000) { freq=250000; }
att=readatt;
set();
}
function setfr(obj) { freg=obj; set(); }
function setfreq(obj) {
var obj=document.getElementById('FREQ');
freg=obj.value;

set();
}
function set() {
if(myWorker != null) {
myWorker.postMessage("LP"+lp+";AT"+att+";F"+freqg+";\n");
}
}
</script>

<input type="button" class="btn" style="font-weight:bold;" name="LP" id="LP"
VALUE="Low Pass" onClick="setlp();"/>

<input type="button" class="btn" style="font-weight:bold;" name="ATT" id="ATT"
VALUE="Attenuator" onClick="setatt();"/>

<input type="text" name="FREQ" id="FREQ" VALUE="14200000" size="13"
onkeydown="setfreq(event);" onclick="setfreq(event);"/>

<input type="button" class="btn" style="font-weight:bold;" name="160m" id="160m"
VALUE="160m" onClick="setfr(1910000);"/>

<input type="button" class="btn" style="font-weight:bold;" name="DOWN" id="DOWN"
VALUE="<" onClick="down();"/>

<input type="button" class="btn" style="font-weight:bold;" name="UP" id="UP"
VALUE=">" onClick="up();"/>

Listing 22: Buttons management

(red: post message to the WebSocket Web Worker)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 57/122

6.5 - Client Receiver

This part of the project works within the server, sends audio, and exchanges controls with a
web application that runs in the browser. The application reads data from the shared
memories and acts as a “superhet” radio, using a local oscillator to convert the selected
frequency to a “zero beat” intermediate frequency, then applies filters to sharpen the band
(and decimation to reduce the bit rate) and then uses a BFO (Beat Frequency Oscillator) to
move the signal to the proper audio frequency. During the operation some FFT are provided
to help the operator select the desired signal. All these operations are sketched into Picture
27.

Thread A Thread C Thread B

- %

-

Picture 27: Client receiver structure (without WebSocket thread)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 58/122

6.5.1 - Choices

The local oscillator is computed a bank at a time using the values of sin() and cos() to
compute the values using the well-known prosthaphaeresis formulas.

The mixing also uses this formulas to compute the difference between the frequencies in the
received signal and the frequency of the local oscillator.

Two different types of oscillator are used: the first is used to avoid aliasing during the process
of decimation, the second is used to shape the bandwidth after the decimation.

To lower the computation price of the filters the decimation of the sample rate is not done in a
single step, but it is carried out in various “divide by two” phases, thus reducing the weight of
the filtering because every phase requires half of the computation of the previous phase even
if it is the same filter.

The filters used are FIR, chosen for the stability, and Butterworth IIR, chosen for the efficacy
and the low ripple in band.

We have decided not to use CIC decimation filters in favor of floating point signal
representation; while it is right that CIC filters are computationally lighter, the overall load on
the given computer is so low that this reduction is not so important.

The implementation of the FIR is not made using a single “central” delay-line but using two
lines, one for the input, the other for the output, to cope with the potential instability of the
algorithms.

We compute three different FFTs: the first is a panoramic one, to show what is happening in
the whole band and is used for a “fast” frequency setup on the user interface, the second is a
detailed one, which allows to see the frequency neighboring and to precisely tune a signal,
and the third is useful to see what is happening in the “audio” band.

The demodulations provided are just the demodulations that can be done with a frequency
translation, so it is possible to receive single side band or telegraphy signals. Also amplitude
modulation can be received, simply using one of the two side bands.

6.5.2 - Radio Receiver Implementation

Before illustrating the structure of the program it is mandatory to explain how and why this
structure has been built. This leads to the radio processing flow.

The model used is not very far from a classic superhet radio concept, with a little difference
intrinsic to its informatics being.

But why a superhet? Because most of the needs for a superhet have not been superseded by
informatics nor mathematics, at this time.

It still has more sense to build a fixed frequency filter and convert the frequency to pass
through it than to build a variable frequency filter (yes, in ancient analog days it was more
related to “tuned amplifiers” than to filters, but it makes no real difference).

Se we start to convert the signal. But, here is the difference, not to a “middle frequency” but
to zero. Or, if you prefer, the value of our “middle frequency” is zero Hz.

Here lays the main difference between digital and analog. While with analog circuits it was
wise to build a tuned amplifier using tuned (i.e: bass band) circuits, we better build low pass
filter.

But remember: in the digital word we have both positive and negative frequencies, so this low
pass filter is, in facts, a pass band filter centered on zero Hz.

But why do we use a low pass filter? Essentially because we have to reduce the sample rate
that, at the origin, is very high, and, before reducing it, we must take care of Nyquist’s limits:
before halving the samples we must halve the passband, or, better speaking, we must ensure

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 59/122

that in the signal there is no frequency over the Nyquist limit (half sample rate, to be short),
frequencies that, inevitably, will be “reflected” to disturb our signal.

Why don’t you just instruct the sampler to reduce your sample rate? Because one of the
important improvements of the SDR over old analog radios is the “pan-adapter”, or the ability
to “see” the radio signals.

On an ancient radio (no matter if it is a wonderful Collins or Rhode&Schwarz) the operator
acts like a blind mouse rotating the tuning knob and hoping to fall on a calling counterpart,
while even on the worst SDR they really see where the signals are.

And this difference is more remarkable when the visible band is wider. So, to spoil as possible
the SDR concept, the band shown must be as wide as possible. This, in turn, leads to a sample
rate as high as possible, or as reasonable. In our implementation we chose a value that allows
a full view of most HF amateur bands.

So we start with a high sample rate, and make an FFT to let the operator have a bird view of
what happens on the band. Then we have to focus on the neighborhood of the interested
frequency.

First of all we do a conversion to put the desired frequency at the middle on the band
(heterodyne to medium frequency of zero Hz), the we start a process of filtering and reducing
the sample rate.

But why reducing the sample rate? For two reasons: the first is that the flow contains
informations we do not need: when receiving a single sideband signal we rely on frequencies
in the range 300-3400 Hz apart from the (not sent) carrier frequency, so sample rates over
8kS/s are not necessary.

Remember that every single sample requires an elaboration so, to save computing power, we
are happy to throw away unnecessary and unwanted samples.

But there is a better and more interesting reason to reduce the sample rate: during filtering
process we “mix” the values and the output of the filter/decimation process has more
“significant” bits than the input. In other words the samples we throw return as more levels,
being the reference value, and limit, an increment of approx half bit for every sample rate
halving.

So we filter and decimate various times. Why not only one shot? Because the weight of a
filter depends linearly on the sample rate, so the best solution is to reduce the sample rate, but,
before that, we have to filter, and, as a result, the best is to cycle through filter-a-few/halve-
samplerate in order to minimize computer load.

At a certain point we produce an “enlarged fft” to let the operator have a “zoomed” view in
the neighborhood of the managed frequency, allowing fast and neat frequency hops to listen to
a nearby signal if needed, then we continue the filtering process until we reach a suitable
sample rate.

In this project this value is 24kS/s. Why? Because the audio context implementation on the
Firefox browser accepts processing sample rates between 20.5hkS/s and 48KS/s and we
prefer to remain as low as possible being also a sub-multiple of 192kS/s, that is the base rate
of the sampler.

At the end we simply discard Q signal and route I signal to the audio channel. All finished?
Not completely. Remember than our filter has the peculiarity to filter from -xHz to +xHz.
Suppose to tune to 7070kHz and to use a filter from -3400Hz to +3400Hz: you receive at the
same time both a USB and a LSB communication with this (suppressed) carrier. Bad news!

So what can we do? Simple! First of all we use a filter from -1550 to +1550 Hz. Then, if we
need to receive LSB (standard for 40m band), we “tune” not to 7070kHz but to 7068150Hz (-
1850Hz). This ensures that the LSB channel (7066600-7069700) is centered in the range
-1550/+1550. But this also means that the signal is in this range, so, after filtering we add
1850Hz to re-translate the signal to the proper 300-3400 range.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 60/122

Se we have to add a mixer, no more. But this is interesting because we can plan to move both
frequencies together, allowing the filter to became a “sliding one”, useful to out-filter a
neighbor unwanted communication.

6.5.3 - Structure

The program starts by launching the two threads responsible for the management of the data
arriving in the two shared memories. Both threads share the same code. Another thread is used
to compute the various FFTs, once the relative data is ready. A thread is used to manage the
WebSocket that is the communication media with the user interface.

The most remarkable thing is that the stream data flow is processed one block at a time, using
two sets of data banks, alternatively filled and processed.

Each data bank has its complete set of data (input data, oscillator data, post-mixer data,
filtered data,...) with the remarkable exception of local oscillator banks, that do not follow
data banks because, since only one data bank is processed at a time, it is not necessary to
compute two series of oscillator data, but the data is computed only for the bank being used.
This allows the usage of static bank “shared” between the two threads: in fact the two threads
execute the same function and, in turn, this function uses the same oscillator buffer, that has
been declared as static. This is not a problem because the data flow ensures that the two
threads do not overlap, provided that the thread process time is shorter than the bank filling
time, condition that is “the” prerequisite for a real time data process as this project.

The last detail is that two of the three FFTs require an input buffer of 1024 couples of 1+Q
values, more than the values in a single bank, after the first decimations are made, so two
static buffers are provided, and filled, by the two different threads. Also for these operations
the non overlap of the two threads is handy because it avoids the need of synchronization.

In a future enhancement the complete set of banks could be static, letting only the two input
shared memories to be “local” to the thread. At the moment this has not been done to allow
faster and simpler debug and profiling.

Less fascinating than the DSP part, but also important, is the thread responsible for the
management of commands from the User Interface. This thread manages a WebSocket used
not only for receiving the commands, but also for sending FFTs and audio data. This is
possible because WebSockets implement, over the TCP layer, an application layer that allows
full bidirectional frame exchange, so the WebSocket management thread mainly receives and
interprets frames from the browser user interface, the two DSP elaboration threads send audio
frames, and the FFT thread sends FFT and command confirmation values. Since the two DSP
threads do not overlap and the WebSocket only receives frames, the only critical overlap
situation is from a DSP thread and the FFT thread. The data does not mix because the frames
are short and locally preassembled before sending; also, in this situation there is no critical
path and no need for synchronization.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 61/122

6.5.3.1 - Oscillators

As can be seen in Listing 23, the local oscillator is computed a bank at a time using the values
of sin() and cos() to compute the values using the well-known prosthaphaeresis formulas. No
matter if the function is called from a thread or another, it computes the values to fill the same
bank, because only a thread is active at each given time.

The “seeds” for the calculation (sin() and cos() for the elementary angle, and last values in the
bank) are kept static so trigonometric functions are computed only the first time and in case of
a frequency change. An amplitude correction algorithm is applied to maintain stable the local
oscillator amplitude.

static float inphase[512*3]={0};
static float quadrature[512*3]={0};

void bufferLO(int freq, float *inphase, float *quadrature, int howMany) {
static int isFirst=1;
static double amplitude=1; static int myfreq=0; static double phi=0;
static double cosphi=1; static double sinphi=0;
static double costmp=1; static double sintmp=0;
static double cossav=1l; static double sinsav=0;
int j;
if(isFirst) {
inphase[howMany-1]=0;
quadrature[howMany-1]=1;
}
if(myfreq != freq) {
myfreqg=freq;
phi=-freq*2*3.1415926535897932384/768000;
cosphi=cos(phi);
sinphi=sin(phi);
}
amplitude=1.0d+(1.0d-sqrt(sintmp*sintmp+costmp*costmp))/howMany;
for(j=0; j<howMany; j++) {
sinsav=sintmp*cosphi+costmp*sinphi;
cossav=costmp*cosphi-sintmp*sinphi;
sintmp=amplitude*sinsav; costmp=amplitude*cossav;
inphase[j]=costmp; quadrature[]j]l=sintmp;

Listing 23: Local Oscillator

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 62/122

6.5.3.2 - Mixers

The various mixers are an application of the prosthaphaeresis formulas. This has been made
possible by the fact that both signal and oscillators are provided in I/QQ format, or, in other
words, that both sin() and cos() components of the signals are available. Listing 24 shows
how conceptually simple is this part of the work.

void bufferMixer(float *in, float *out, int howMany, float *osci, float *oscq) {

int hm=howMany/4;

int j,k;

float inf, qua;

for(j=0,k=0; j<hm; j+=2,k++) {
inf=in[j];
qua=in[j+1];
// cos(a+b)=cos(a)*cos(b)-sin(a)*sin(b)
out[j]=inf*osci[k]-qua*oscql[k];
// sin(a+b)=cos(a)*sin(b)+sin(a)*cos(b)
out[j+1l]=inf*oscq[k]+qua*osci[k];

Listing 24: Mixer (using prostapheresys formula)

6.5.3.3 - Filters

Two kind of filters are implemented: FIR (see Picture 28) and IIR (see Picture 29). At the very
beginning it was thought that the better implementation for the “filter and decimate” was a
CIC approach but, at a better analysis, it resulted that CIC implementation relies on integer
mathematics because floating points does not allow a precise compensation of values, so a
more conservative approach was used.

Picture 28: FIR filter schematic

For the “HF” part (higher sample rates, mainly anti-alias filter) a FIR was used, to exploit its
superior stability, while for the “MF” part a IIR of Butterworth filter is used.

While the FIR implementation (shown in Listing 25) is straightforward, the IIR
implementation (shown in Listing 26) requires some caution because one of the
implementations, with a single delay line (buffer), is prone to instability and the other, with
two delay lines, is preferable.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 63/122

An important observation must be done about filters delay lines: those buffers are static and
not “thread local” for the same reason that allows oscillators buffers to be static, the fact that
only a thread at a time is active.

Picture 29: One (left) and two (right) delay line IIR filter schematics

void bufferFilter(float* in, float*out, int howMany, double *coeff,
float *historyi, float *historyq, int lung, int *punt) {
int j,k,y;
int hm=howMany/4;
for(j=0,y=0; j<hm; j+=4,y+=2) {
historyi[(++*punt)%lung]=in[j];
historyq[(*punt)%lung]l=in[j+1];
historyi[(++*punt)%lung]=in[j+2];
historyq[(*punt)%lung]l=in[j+31];
out[y]=0;
out[y+11=0;
for(k=0; k<lung; k++) {
out[y]+=historyi[(k+*punt)%lung]*coeff[k];
out[y+1]+=historyq[(k+*punt)%lung]*coeff[k];

Listing 25: FIR filter implementation

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 64/122

void audioFilter(float *in, float *out, int howMany, int order,
double *denom, double*numer, double *histii, double *histigq,
double *histui, double *histuq, int divide) {

int j,k;
long double acci, accq;
for(j=0; j<howMany; j+=2) {
for(k=order; k>0; k--) {
histii[k]=histii[k-1];
histiq[k]=histiq[k-1];
histui[k]=histui[k-1];
histuq[k]=histuq[k-1];
}
histii[0]=in[]];
histiq[0]=in[j+1];
acci=0.0;
accg=0.0;
for(k=0; k<=order; k++) {
acci+=histii[k]*numer[k];
accg+=histiqg[k]*numer[k];
}
for(k=1; k<=order; k++) {
acci-=histui[k]*denom[k];
accg-=histuqg[k]*denom[k];
}
histui[0]=acci;
histuq[0]=accqg;
out[j]=acci;
out[j+1]=accq;
}
if(divide > 1) {
for(j=divide*2, k=2; j<howMany; j+=divide*2,k+=2){

out[k]=out[]];
out[k+1]=out[j+1];

Listing 26: IIR filter implementation

6.5.3.4 - HF FIR Filters Sizing

These filters are needed mainly as anti alias filters before each sample rate halving. There are
four calls to such a filter. To optimize the filters, the first two are 15 taps filters while the
second couple of filters are 23 taps ones. This because each filter is computed on half points
than the previous and, also, its pass band ripple is more important than the previous because
the band is lesser.

To compute the filters we can use various applications, starting with the well-known Matlab.
We chose to use a web application named Tfilter that is very simple to use, as can be seen in
Picture 30 and 31.

The filters are shaped to obtain 100 dB of attenuation of frequencies over the Nyquist limit
and to maintain the in band ripple under one dB.

The program is built in such a way that it is straightforward to recompute a filter with
different values and insert these values in the source code, in Listing 27 it is reported how the
coefficients are inserted in the source code, and Listing 28 shows how the filters are called.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

65/122

w0 [[BB @orz rsx @os @osz [Flon € i Maumni [Announcement ro.. @ amminisra groovei. [vanoo roups

Gain vs. Frequency Impulse Response Source Code

O 3+ A 4> E O vy =

ten nsn‘ IR Design C‘} peeda FIR r.lu;%
i plin text A doubie

% add passband %) add stopband | Ipredefined o Tyl 0000z

desired #taps.

actual taps | 15

DESIGN FILTER

1 205 | o83d8 ||
0B 1010408 [

1am working on TFilter2. Screenshot here. Features include CIC (Sinc) flters,
effect of quantizatio aliasing visualization, and signal chain.

1

TFilter, th.
Il Like Page.

(951 mea b ' e

Copyriht ©.2011 Peter isza

Picture 30: Parameters, response, and coefficients of the first, 15 coefficients, HF filter

http://t-filter.engineerjs.com/

ted, 7 gugno 2016 09:56:43

static double coeff0[]={0.0005682363843196175,
.014915836118325287,
.1228026248638052, 0.16102227904707134,
.16102227904707134, 0.1228026248638052,
.0387805695219929,
.0005682363843196175 };

double coeffl[]1={0.0005682363843196175,
0.014915836118325287,
0.1228026248638052, 0.16102227904707134,
0.16102227904707134, 0.1228026248638052,
.0387805695219929, 0.014915836118325287,
0.0005682363843196175 };

o O O oo

static

static
-0.005854667699670814,
-0.01569053558305392,
0.14668804652489328,

0.212680055050458,
0.14668804652489328,
-0.01569053558305392,
-0.005854667699670814,

0.212680055050458,

static double coeff3[]={-0.00024070095796718734,
-0.013317414278153432,
0.012765160512214234,

-0.005854667699670814,
-0.01569053558305392,
0.14668804652489328,
0.212680055050458,
0.14668804652489328,
-0.01569053558305392,
-0.005854667699670814,

0.212680055050458,

0.0387805695219929,

0.014915836118325287,

0.0387805695219929,

double coeff2[]={-0.00024070095796718734,
-0.013317414278153432,
0.012765160512214234,

0.07076145541162247,
-0.020062118534461132,
-0.0016601253102937602,

0.07076145541162247,
-0.020062118534461132,
-0.0016601253102937602,

0.003977628147141972,

0.1760082348590731,

0.07706302235338547,

0.003977628147141972,

0.1760082348590731,
0.07706302235338547,

0.003977628147141972,

Listing 27: Filter coefficents in the source code

0.07706302235338547,

0.003977628147141972,

0.07706302235338547,

0.012765160512214234,
-0.013317414278153432,
-0.00024070095796718734};
-0.0016601253102937602,
-0.020062118534461132,
0.07076145541162247,
0.23895244966549228,

0.012765160512214234,
-0.013317414278153432,
-0.00024070095796718734};

-0.0016601253102937602,
-0.020062118534461132,
0.07076145541162247,
0.23895244966549228,

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 66/122

€)G engineers.com vlella O3 A 4B O wvE =
Deor- & 53w [@ E @oe ek @os @osz [Fon coma Flaumni
Gain vs. Frequency Impulse Response Source Code Feature Request Enterprise IIR Design m-nxnlu&
,‘ i
5 ipple bounds

160 TFilter, th...
= I Like Page.

ey e 200000 250000) sy
Copyiht © 2011 Peter sza.
%) add passband 3 add stopband | predefined < sampling freq. 763000 Hz 1am working on TFilter2. Screenshot here. Features include CIC (Sinc) fiters,
e o . effect of aliasing ‘and signal chain.
oz | 4a000mz | 1 205 | 0468 (i actual #aps| 21
192000z 364000 rz| 0 | -00dp |-1108208 [
DESIGN FILTER
Fl | 8O & wei—ooenn @t com. o Tanseis m 8 Y- roen X3 @ow@a ~ mared,gugno2016 095805 =

Picture 31: Parameters, response, and coefficients of the second, 21 coefficients, HF filter

http://t-filter.engineerjs.com/

bufferFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE, coeffo,
historyi0, historyq0, coeff lung0, &coeff punt0);

bufferFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/2, coeffl,
historyil, historyql, coeff lungl, &coeff puntl);

memcpy(payl->bufmed+sectl, payl->buf, BUFFERSIZE/4);

sect1+=BUFFERSIZE/4;

if(sectl >1024*16) { // 4+4 bytes(I+Q)*2(because FFT decimate)
sectl=0;
pthread cond signal(payl->con_c);

}

bufferFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/4, coeff2,
historyi2, historyq2, coeff lung2, &coeff punt2);

bufferFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/8, coeff3,
historyi3, historyq3, coeff lung3, &coeff punt3);

Listing 28: Calls to the FIR filter implementation

(red: first filter, blue: second filter)

Software Defined Radio with Remote Head and Internet Clients

67/122

Scuola universitaria professionale della Svizzera italiana

6.5.3.5 - Audio IIR filters sizing

For the selectivity shaping filters we apply many times the same filter. This filter is an IIR
one, chosen both to have a better shape and to experience a different type of filter.

For the design of IIR filter we chose another tool, http://engineerjs.com/ (see Picture 32), that
allows not only the design of a filter but also the simulation of the same filter. This simulation
is an important and useful feature because, due to the particular nature of the IIR filters, i.e.
their infinite response, it is possible that this nature mixed with the approximation of the used
mathematics, can result into instabilities. We computed a very simple filter with only few
coefficients (see Listing 29), but, in the code, this filter was applied many times (see Listing

30).

Free collaborative engineering toolkit

@ untitled #7 x

) rthliR
type = ZeroPoleGain

@ zeros = [1111]
poles :I: 0.8994+0.188/ 0.8102+0.07015/ 0.8102-0.07015/ 0.8994-0.188i]
4 gain = 0.0001164+7.243e-21i
& fs = 48 kHz
» functions

I lo litt
0

amplitude (dB)

-50

-100

@ type = IR
. numeraw,:[0.0001164 0.0004657 0.0006985 0.0004657 0.0001164 :|

o denominator= | 1 -3.419 4.42 2557 05583 |

Picture 32: Design of audio IIR filter

http://engineerjs.com/

static double denoml[]={ 0, -3.419, 4.42, -2.557, 0.5583 };
static double numerl[]={ 0.0001164, 0.0004657, 0.0006985, 0.0004657, 0.0001164 };

Listing 29: IIR filter coefficients

audioFilter((float *)payl->buf, (float *)payl->buf,
BUFFERSIZE/16/4, 4, denoml, numerl, histiioO,
histig0, histuiO, histug0, 1);

audioFilter((float *)payl->buf, (float *)payl->buf,
BUFFERSIZE/16/4, 4, denoml, numerl, histiil,
histigl, histuil, histuqgl, 1);

audioFilter((float *)payl->buf, (float *)payl->buf,
BUFFERSIZE/16/4, 4, denoml, numerl, histii2,
histig2, histui2, histug2, 1);

audioFilter((float *)payl->buf, (float *)payl->buf,
BUFFERSIZE/16/4, 4, denoml, numerl,
histii3, histiqg3, histui3, histuq3, 2);

Listing 30: Calls to IIR filter

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 68/122

6.5.3.6 - FFT

To compute the FFT we used the same algorithm of the central control program, so there is no
need to describe it again, apart from the fact that the audio FFT is computed only on “odd
samples” to enlarge the spectrum. This has no aliasing consequence because the signal is well
frequency limited (we use a high sample rate only for the limits imposed by the audio
context). For the same reason half of the computed spectrum carries no information and is
dropped before composing the WebSocket frame to be sent to the browser that shows the user
interface.

6.5.3.7 - Putting All Together

The two threads that make the computations over the two banks perform all the operations
we just saw: they start waiting for the condition variable to be released, and then signal for the
fft, compute oscillator values, mix, perform the filter/decimation computation, fire the
condition variable for the enlarged FFT, compute the BFO oscillator values, mix, perform
selectivity filtering, fire the audio FFT, re-convert the base band frequency to the right values
and, at the end, send the audio as a WebSocket frame to the browser that implements the user
interface, all these operations can be seen in Listing 31.

for(;;) |
pthread cond wait(payl->con, payl-mut);
if(payl->payload) {
pthread cond_signal(payl->con_a);
¥
memcpy((char *)payl->tune, payl->shmaddr-6, 4);
memcpy((char *)payl->att_ lowpass_rate, payl->shmaddr-2, 2);
bufferLO(*payl->freq, inphase, quadrature, BUFFERSIZE/8);
bufferMixer((float *)payl->shmaddr, (float *)payl->buf,
BUFFERSIZE, inphase, quadrature);
bufferFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE,
coeff0, historyiO, historyq0, coeff lung0, &coeff punt0);
bufferFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/2,
coeffl, historyil, historyql, coeff lungl, &coeff puntl);
memcpy(payl->bufmed+sectl, payl->buf, BUFFERSIZE/4);
sect1+=BUFFERSIZE/4;
if(sectl >1024*16) { // 4+4 bytes(I+Q)*2(because FFT decimate)
sectl=0;
pthread cond_signal(payl->con_c);
¥
bufferFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/4,
coeff2, historyi2, historyq2, coeff lung2, &coeff punt2);
bufferFilter((float *)payl->buf, (float *)payl-buf, BUFFERSIZE/S,
coeff3, historyi3, historyq3, coeff lung3, &coeff punt3);
bufferBFO(*payl->bfo, BFOinphase, BFOquadrature, BUFFERSIZE/16/8);
bufferMixer((float *)payl->buf, (float *)payl->buf,
BUFFERSIZE/16, BFOinphase, BFOquadrature);
audioFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/16/4,
4, denoml, numerl, histiiO, histiq0, histuiO, histuq0, 1);
audioFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/16/4,
4, denoml, numerl, histiil, histiql, histuil, histuql, 1);
audioFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/16/4,
4, denoml, numerl, histii2, histiqg2, histui2, histuq2, 1);
audioFilter((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/16/4,
4, denoml, numerl, histii3, histiqg3, histui3, histuq3, 2);
memcpy(payl->buftemp+sect, payl->buf, BUFFERSIZE/32);
sect+=BUFFERSIZE/32;
if(sect >1024*16) { // 4+4 bytes(I+Q)*2(because FFT decimate)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 69/122

sect=0;
pthread cond signal(payl->con b);
}
bufferBFOl(-*payl->bfo, BFOlinphase, BFOlquadrature, BUFFERSIZE/32/8);
bufferMixer((float *)payl->buf, (float *)payl->buf, BUFFERSIZE/32,
BFOlinphase, BFOlquadrature);
buf[0]=0x82;
buf[1]=0x7e;
buf[2]=0x00;
buf[3]=0xC4;
buf[4]=0x04; //audio
buf[5]='A";
buf[6]='F"';
buf[7]=0x01;
(j=0,k=8; Jj<BUFFERSIZE/32; j+=8,k+=4){
memcpy(buf+k, payl->buf+j, 4);

for

}
if(*payl->outfile > 0) {
k=write(*payl->outfile, buf, 200);
if(k==-1) {
fprintf(stderr, "Error writing audio stream error %d - %s\n",
errno, strerror(errno));

Listing 31: The signal processing thread

(red:oscillators, blue: mixers, green:filters,
violet: WebSocket frame with audio data)

6.5.3.8 - WebSocket Management

To interact with the user interface a WebSocket is used. Its working is very similar to the
WebSocket implemented in the central control program, with the main difference that it also
sends an audio frame containing 96 audio samples at 24kS/s, as can be seen in Listing 31.

6.5.4 - Evaluations and Measures

This part of the work is the most computation intensive task. Since it can be used by many
users it is important to measure the CPU load to verify how many clients can be served by a
given server.

Some estimations are carried out using the standard CPU monitoring tool xfce4-cpugraph-
plugin, and the load estimated is around 17% with one single client running (this includes
operating system, elad-server and one instance of elad-client accepting connections), 34%
with two clients running and 50% with three clients running, on a 2.2 GHz 4 core
hyperthreaded i7-2670QM Intel CPU. It seems that this CPU could support no more than 5
clients. This CPU is a laptop specialized one, approx five years old, so a modern server could
perform better. For example, as per the document present at
https://www.cpubenchmark.net/high_end_cpus.html, the i7-2670QM CPU is accredited a
mark of 5,945, where the E5-2679 CPU has a mark of 25,911, more than 4 times, and also has
10 cores and 20 threads that are 2.5 times the core/threads of the i7-2670QM CPU. Based on
these estimations it is possible that, using this processor, this application can scale to ten /
twenty simultaneous clients.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 70/122

Terminale - giovanni@mir: ~

File Modifica Visualizza Terminale Schede Aiuto

Device eth® [192.168.1.116] (1/3): =

Incoming:

G G i i G

At R

At R

A A S S S S

A R R A R R R A R R R A S R R

HAR AR R R R R Curr: 51692656.00 Bit/s
HAR AR R R R R Avg: 51689168.00 Bit/s
HAR AR AR R R R Min: 51624960.00 Bit/s
HAR AR R R R Max: 51742032.00 Bit/s
HAR AR R AR R R R Tt 11.79 GByte
Outgoing:

Curr: 1047304.00 Bit/s
Avg: 1056816.00 Bit/s
Min: 1014624.00 Bit/s
Max: 10680560.00 Bit/s
. TE 1 181.04 MBytel] =

Picture 33: Elad-server and elad-client aggregated bandwidth

=

The network load is also measured (as can be seen in Picture 33), using nload, and the data
rate measured, about 1.05Mbit/s, that also aggregates the data flow generated by elad-server
(about 77kb/s), reflects the following computations; the packets sent are of four types, all
WebSocket TCP packets. Their data length are:

* 916 bytes for HF FFT, every 90ms

* 916 bytes for MF FFT, every 90ms

* 632 bytes for BF FFT, every 90ms

* 200 bytes for “audio” signal, every 2ms
for a total of approx 1Mb/s of pure data, without TCP/IP headers (not simple to evaluate
because of packet assembly done by the protocol).

0.7
0.68
0.66
0.64
0.62
0.6
0.58
0.56
0.54 WW\MWWMWWWJ Lﬂm
0.52

0.5
0 100 200 300 400 500 600 700 800 900 1000

Elapsed time (ms)

Elaboration time (ms)

Picture 34: A sample of HF thread elaboration times

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 71/122

These figures show that on a typical hi-speed Internet connection of 10 Mb/s it is possible to
send data to 5 clients without saturating the band, and that a hi-speed cable Internet
connection (50/500 Mb/s) could be able to support the number of clients that a good server
can support (the above supposed 10 to 20).

Also the duration of the HF thread has been measured, in the usual way, getting time at the
beginning and at the end of the elaboration and computing the difference. A single client has
been run and the data has been collected. The average value is about 0.5ms, with a minimum
value of 0.4ms and a maximum of 0.7ms, as can be seen in Picture 34.

In Picture 35 the FFT times are traced to see the elaboration time that goes from 0.2ms to
1.1ms. These values do not create problems because the fft are computed every 30ms and
have their computation buffer (and, also, the original buffer reference time is 2ms).

7z ’

:)

g o | gu.vl

§ o°

g il |

2 L AMAANADA A M
"o 10 20 30 40 50 60 70 100

Sample

Picture 35: A sample of FFT elaboration times

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 72/122

6.6 - Receiver User Interface

The receiver user interface is a web application, that can be seen in Picture 36, implemented
as a web page that allows visiting browsers to connect to the client receiver program using a
WebSocket. It receives FFT data and displays the spectrogram and waterfall to assist the
operations. It also offers a simple interface to set up the operations, like selecting the
modulation, the filters, the reception frequency.

14,161 875Hz H 14,186 875Hz 14,199,375Hz 14,211 875Hz

Picture 36: A screen shot of the receiver user interface

Many efforts have been made to design a proper interface that allows the operator to work in a
comfortable and “familiar way”. This is not so simple because the interface of a radio receiver
is a well designed and known interface: operators are familiar with tuning and volume knobs,
not with mouse drag and drop. On the other hand a spectrogram allows the incomparable
“point and click” frequency set, so we implemented a double mechanism that allows both
point and click and “knob tuning”, using the mouse wheel as a tuning knob.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 73/122

6.6.1 - Choices

The user interface is built within a browser. This decision was made to offer the highest
flexibility, because using browsers avoids to force limits to the platform and the location of
the client interface.

Using browsers implies the use of the network, and this is in line with the overall philosophy
of the project. The language selected for programming within the browser is JavaScript. Since
JavaScript is interpreted in a single thread, a Web Worker is used in the browser to allow
concurrency. The communications are done using WebSockets and the rendering of the
waterfall is done using canvas and the graphical primitives from JavaScript. The
communications between the main thread and the WebSocket worker thread are done using
messages. The audio is routed by the audio context that allows browsers to perform a good
audio handling.

6.6.2 - User Experience

It may seem strange that a work on signal processing takes care of the user experience. But it
is definitely no matter of “whistles and bells”. Radio operators are well trained professionals
looking for an instrument that is efficient and effective. This not only means that the
processing is technically well done and exploits well the computer resources like processor,
memory, network, audio devices, but also that the operator can interact in an effective mode
with the device.

This means that all the new opportunities must be caught, like having spectrograms where you
“point and click” to change the frequency, but also not dropping the way of operations
familiar to the operator.

The user interface has some simple objects allowing the operator to control the radio, like
buttons to change modulation or selectivity. Those are buttons that can be clicked.

Also there are some spectrograms which the operator can click to set the frequency. Under
each spectrogram there is a waterfall screen whose purpose is to allow the operator to perform
a “time integration” by showing vertical (discontinue) lines that evidence that there were
operations on a frequency even if there is no activity in the exact moment the operator is
looking at the screen, or if the level of the signal is hard to be distinguished among the noisy
neighborhood.

But, when the mouse is on a spectrogram, moving its wheel lets the operator change the
frequency, mimicking the tuning knob operation well known and desired by the operators.
The mouse wheel sensitivity (i.e.: the amount of frequency variation associated with a rotation
step) varies with the spectrogram over which is the mouse, letting the operator do both a
“quick and rough” or a fine tuning.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

6.6.3 - Structure

74/122

As can be seen in Picture 37, the receiver user interface is a web page that mixes HTML
defined elements with some JavaScript that manages the various aspects of the operations:
* it manages the WebSocket that communicates with the client receiver; this WebSocket
is managed into a Web Worker to gain a certain amount of parallelism;
* it draws the various spectrograms and waterfalls;
* it converts the received audio samples to the local audio rate using an off-line audio
context to gain also here a certain amount of parallelism;
e it plays the audio using an audio context to divide audio rendering from other
operations; this context manages a separate thread that is driven by the requests by the

audio devices;

* it manages the events from the buttons, the canvas, the keyboard, and the mouse.

Message received

Frequency, modulation, | selectivity

Web socket frame received
} Send Web socket frame Send Message

Send Message

Events
from button
and mouse

Synchronous
queue

Message received

FFT data

Draw FFT
onh canvas

Offline

audio Render sound

context

audio
context

Play audio

Picture 37: Web receiver user interface structure

6.6.3.1 - Websocket

The WebSocket, visible in Listing 32, is implemented into a Web Worker and is very similar
to the WebSocket that is implemented in the control browser, with the main difference that
there it has more than one kind of frame to manage: there are three different frames for the

three FFT data plus one frame with the audio data.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 75/122

var mySocket = null;
var inited=0;
mySocket= new WebSocket("ws://192.168.1.116:7777/££ft", "chat");
mySocket.binaryType='arraybuffer';
mySocket.onopen=function(event){
inited=1;
mySocket.send("give me FFT");
}
mySocket.onclose=function(event) {
console.log("WebSocket error", event);
}
mySocket.onmessage=function(event){
self.postMessage(event.data);
}
self.onmessage=function(message) {
console.log("message", message.data);
if(inited == 1) {
mySocket.send(message.data);

Listing 32: The WebSocket thread

6.6.3.2 - Graphics

The receiver user interface has an HTML definition of the various layers, as can be seen in
Listing 33. It differs from the control browser mainly for the different number of canvas
required to draw the various spectrograms and waterfalls, and the different placing of the
various buttons.

<style>

.layer { position: absolute; }

.scale { position: absolute; top:200px; }

.nolayer { position: absolute; top:240px; }

.cmds { position: absolute; top:450px; left:920px }
#myFFTline { z-index: 4 }

#myFFTgrid { z-index: 3 }

#myFFTdata { z-index: 2 }

#myFFTbkground { z-index: 1 }

.layerMF { position: absolute; left:920px }

.nolayerMF { position: absolute; top:240px; left:920px }
#myFFT1lineMF { z-index: 4 }

#myFFTgridMF { z-index: 3 }

#myFFTdataMF { z-index: 2 }

#myFFTbkgroundMF { z-index: 1 }

.layerHF { position: absolute; top:450px; }

.scaleHF { position: absolute; top:650px; }

.nolayerHF { position: absolute; top:690px; }
#myFFT1lineHF { z-index: 4 }

#myFFTgridHF { z-index: 3 }

#myFFTdataHF { z-index: 2 }

#myFFTbkgroundHF { z-index: 1 }

</style>

<BODY bgcolor="Black" onload="setBackground();caio();">
<TABLE><TR><TD>

<canvas class="layer" id="myFFTgrid" width="896" height="200" style="border:1lpx
solid #000000;"></canvas>

<canvas class="layer" id="myFFTbkground" width="896" height="200"
style="border:1px solid #000000;"></canvas>

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 76/122

<canvas class="layer" id="myFFTdata" width="896" height="200" style="border:1lpx
solid #000000;"></canvas>

<canvas class="layer" id="myFFTline" width="896" height="200" style="border:1lpx
solid #000000;"></canvas>

<canvas class="scale" id="scale" width="896" height="50" style="border:1lpx solid
#000000; "></canvas>

<canvas class="nolayer" id="myWfall" width="896" height="200" style="border:lpx
solid #000000;"></canvas>

</TD><TD>

<canvas class="layerMF" id="myFFTgridMF" width="512" height="200"
style="border:1px solid #000000;"></canvas>

<canvas class="layerMF" id="myFFTbkgroundMF" width="512" height="200"
style="border:1px solid #000000;">

</canvas>

<canvas class="layerMF" id="myFFTdataMF" width="512" height="200"
style="border:1px solid #000000;"></canvas>

<canvas class="layerMF" id="myFFTlineMF" width="512" height="200"
style="border:1px solid #000000;"></canvas>

<canvas class="nolayerMF" id="myWfallMF" width="512" height="200"
style="border:1px solid #000000;"></canvas>

</TD></TR><TR></TD>

<canvas class="layerHF" id="myFFTgridHF" width="896" height="200"
style="border:1px solid #000000;"></canvas>

<canvas class="layerHF" id="myFFTbkgroundHF" width="896" height="200"
style="border:1px solid #000000;">

</canvas>

<canvas class="layerHF" id="myFFTdataHF" width="896" height="200"
style="border:1px solid #000000;"></canvas>

<canvas class="layerHF" id="myFFTlineHF" width="896" height="200"
style="border:1px solid #000000;"></canvas>

<canvas class="scaleHF" id="scaleHF" width="896" height="50" style="border:1lpx
solid #000000;"></canvas>

<canvas class="nolayerHF" id="myWfallHF" width="896" height="200"
style="border:1px solid #000000;"></canvas>

<TD></TD>

</TD></TR></TABLE>

<form action="javascript:set();">

<TABLE><TR>

<TD><input type="button" name="LSB" id="LSB" VALUE="LSB"
onClick="setlsb();this.form.submit();"/></TD>

<TD><input type="button" name="USB" id="USB" VALUE="USB"
onClick="setusb();this.form.submit();"/></TD>

<TD><input type="button" name="CW" id="CW" VALUE="CW"
onClick="setcw();this.form.submit();"/></TD>

<TD><input type="button" name="NARROW" id="NARROW" VALUE="NARROW"
onClick="setbwnarrow();this.form.submit();"/>

</TD>
<TD><input type="button" name="MEDIUM" id="LP" VALUE="MEDIUM"
onClick="setbwmedium();this.form.submit();"/></TD>

<TD><input type="button" name="WIDE" id="WIDE" VALUE="WIDE"
onClick="setbwwide();this.form.submit();"/>
</TD></TR></TABLE>

</form>

</BODY>

Listing 33: Definition of the graphic elements in the page using HTML

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 77/122

6.6.3.3 - User Commands

As seen there are many possible interactions for the operator, who can click the buttons to
change modulation mode or bandwidth, or can click the spectrograms to change the
frequency, or use the mouse wheel to also change the frequency.

All these operations are done defining handlers that intercept the events: the definitions for
the buttons can be seen in Listing 34 showing the HTML that outlines the graphic elements of
the page.

All the handlers change some variables and, then, craft a message to the Web Worker to send
a WebSocket frame with the setup command to the client receiver.

function setlsb() {
mode='LSB';
bfoFreq=+1850;

}

function setusb() {
mode='USB';
bfoFreq=-1850;

}

function setcw() {
mode='CW';
bfoFreq=-700;

}

function setbwnarrow() {
bw="'NARROW' ;

}

function setbwmedium() {
bw='MEDIUM' ;

}

function setbwwide() {
bw='WIDE";

}

function set() {
if(myWorker != null) {

myWorker.postMessage("MODE="+mode+"\nBW="+bw+"\nFC="+fc);

}

Listing 34: The functions fired by the buttons

There are some particular events used to catch the action performed by the mouse clicking on
the spectrograms or by the movement of the mouse wheel when the pointer is on a
spectrogram, as can be seen in Listing 35.

On a click the x position is extracted by the event passed as parameter to the handle and the
new frequency is computed.

On a wheel movement the central frequency is increased or decreased of a certain frequency
interval, proportional to the wheel rotation and depending on which spectrogram the pointer
is.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 78/122

elem=document.getElementById('myFFTline"');

ref=elem.offsetLeft-1+elem.width/2;

elem.addEventListener('click', function(event) {
prop=96000*Math.pow(2, readrate)/1024;
fc=1000*parseInt((event.pageX-ref)*prop/1000);

set();

}, false);

elem.addEventListener('wheel', function(event) {
fc-=1000*event.delta¥Y/3; set();

}, false);

elem=document.getElementById('myFFTlineHF');
elem.addEventListener('click', function(event) {
prop=96000/1024;
fc=readfc+parseInt((event.pageX-ref)*prop);

set();

}, false);

elem.addEventListener('wheel', function(event) {
fc-=100*event.deltaY/3; set();

}, false);

elem=document.getElementById('myFFTlineMF');
refl=elem.offsetLeft+elem.width/2;
elem.addEventListener('click', function(event) {
prop=12000/1024;
fc=readfc+parseInt((event.pageX-refl)*prop);

set();

}, false);

elem.addEventListener('wheel', function(event) {
fc-=10*event.delta¥/3; set();

}, false);

Listing 35: Mouse handlers

(red: click event, blue: mouse wheel events)

6.6.3.4 - Spectrograms

The code for drawing the spectrograms is the same as the code used for the spectrogram in
the control browser: the main difference is the fact that there are three distinct spectrograms,
but this only means that there are three different drawing phases that follow the same
procedure.

6.6.3.5 - Audio Management

This was the most challenging part of the work, mainly because of the limit imposed by the
browser. We start by the fact that the only simple way to exchange audio between a server and
a browser is to use a WebSocket that, in turn, uses TCP/IP. This may not seem a very good
idea from the perspective of the delays, but it avoids the complex work needed to use
WebRTC. The fact that WebSockets use TCP and not UDP (reportedly, for security reasons)
allows the communication to pass though the network, crossing network devices (routers,
firewalls, ...) without the troubles experienced by UDP communications.

Another important limitation is the fact that the browser follows the audio card setup without
any possibility to change it (already, for security reasons).

The final limitation is that, to be able to use a thread different from the main loop, it is not
possible to use Web Worker (this part of audio context is planned, standardized, but not
available) but audioScriptProcessor must be used. This component is normally used as part of
an audio processing flow, allowing the modification of the data (for example, adding white

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 79/122

noise or distorting the sound). Here it is used as a source and, by doing so, the callback is
called when the audio destination needs more data. This approach has been demonstrated
effective, but, it also imposes two other limitations: the first is that the samples are elaborated
at the (not previously known) audio card sample rate, and the second is that the buffer must be
of a number of samples that can be set, but must be a power of two.

These limitations impose that a sample rate conversion must take place and this conversion
must be done within the browser itself, and, also, there must be a buffering to accommodate
the difference of buffers.

Fortunately, there is a component that can take care of the data rate conversion, here called
“audio rendering”. The solution is to create an audioBuffer and use an offlineAudioContext to
perform the conversion. With the converted buffers an array of object is created and extended,
using a callback fired at the end of the rendering process. The good news is that
offlineAudioContext performs the operation in a separate, async thread, avoiding setting locks
on the main thread that serve the queue where the sendMessage() function from the
WebSocket puts the data. All these operations can be seen in Listing 36.

At this point the normal audioContext, or, better, its callback of the audioScriptProcessor, can
use the elements from the array of objects to fill its output buffer, as can be seen in Listing 37.
Doing this work it is a good practice to buffer some data to prevent jerky audio. This could be
done in a very simple and elegant way simply enumerating the elements and without opening
the first few so, when the callback is executed some audio data is available. This also allows
the usage of segments of one or more of the objects to fill the audioScriptProcessor output
buffer, that has, in general, a different size from the audio data objects.

if(first[0]==4) { // audio data
var sndarr = new Float32Array(e.data);
var mysnd = sndarr.slice(1); // first 4 bytes are part of an header
if(!(soundrec%10)) { // we accumulate 480 samples of data into a buffer
universe = new (window.OfflineAudioContext ||
window.webkitOfflineAudioContext)(1,
samples,audioCtx.sampleRate);
buff = universe.createBuffer(1,480,24000);
soundrec=0;
}
buf = buff.getChannelData(0);
for(j=0; j<48; j++) { // fille the buffer
buf[soundrec*48+j]=sndarr[j+1];
}
soundrec++;
// when the buffer is filled we elaborate it
if(! (soundrec%10)) {
source=universe.createBufferSource();
source.buffer=buff;
source.connect(universe.destination);
// the operations take place asynchronously
source.start(0);
// when completed we extract the data
universe.oncomplete=function(audioBuffer) {
soundobj[lastob]j]=new Float32Array(
audioBuffer.renderedBuffer.getChannelData(0));
lastobj++;
bufferlength=audioBuffer.renderedBuffer.length;
}

universe.startRendering();

Listing 36: Receiving audio data from WebSocket and rendering them

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 80/122

Enumerating segments can be seen as an idea not really proper, because of the overflow, but a
simple computation shows that such an event can occur more or less after a month of
uninterrupted operations, that is an uncommon scenery for a web application. Nevertheless
this is a point that could be improved.

Once created, the objects must be deleted, but it seems that this operation is not needed
because of the scope-driven garbage collection implemented in JavaScript; again, this is
another point that should be investigated to improve this aspect of the application.

This implementation has been proven robust and effective, but many improvement could be
done, the first being a codec implementation to reduce the bit rate that is an infamous
24kS/s*32 bit/sample=768kb/s of data only; with the headers it could exceed 1Mbit/S, that
can sound as an enormity, but it has to be kept in mind that speeds of 10 and more Mbit/sec
are, in many countries, normal. Despite this a codec insertion could be a good idea.

var audioCtx = new (window.AudioContext || window.webkitAudioContext)();
var samples=audioCtx.sampleRate*480/24000;
source = audioCtx.createScriptProcessor(1024, 1, 1);
source.connect (audioCtx.destination);
source.onaudioprocess = function(event) {
if(Math.floor(firstobj*1024/bufferlength) < lastobj+2) {
outData=event.outputBuffer.getChannelData(0);
sect=Math.floor(firstobj*1024/bufferlength);
start=(firstobj*1024)%bufferlength;
for(j=sect,k=start,1=0; 1<1024;) {
outData[l]=soundobj[j]l[k]1*1000;

k++;
1++;
if(k>=bufferlength) {
k=0;
Jt+;
}
}
firstobj++;

Listing 37: The context that fill the rendered data into the buffer when requested by audio card

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 81/122

7 - Conclusions

The development of this project has allowed us to deepen a range of topics:
* USB asynchronous transfer to allow low latency
* shared memories as inter process communication method
* use of conditional variables on shared memories as a method of synchronizing
processes
* development of WebSocket communications
* development of various digital signal processing related to radio environment:
oscillators, mixers, filters (both FIR and IIR), Fast Fourier Transform
* development of graphic routines in JavaScript into browser using canvas and graphic
context
* management of audio data in browser using audio context.
For all these topics some working artifacts were developed, so we can say that the outcome is
not only knowledge but also some working pieces of code, that can be re-used to complete
other projects.

7.1 - State of the Project and Future Options

The work done allows the building of a truly working solution that can be used to remotize a
sampler, receiving signals from a remote site.

The developed infrastructure is useful to make test with various filters setup and to test new
configurations, being a complete and robust SDR infrastructure.

Nevertheless there are areas where the project could be improved:

* 1/Q sample network transmission: it could be tested if it is better to send 24 bit integer
values from remote embedded card to the server and 8 or 16 bit integer values for
audio to the browser

* FFT: it could be verified if it is possible to use half byte for the value of a single bin,
to reduce the network load

* it could be interesting to explore different coefficients or test a CIC implementation
for the first filters

* it could be interesting to try filters based on FFT to better shape the audio filter

* it could be interesting to try to insert some codecs to compress the audio flow to the
browser

* it could be interesting to implement a strength meter

* it could be interesting to implement the demodulation of other signals as AM or FM

* it could be interesting to implement the demodulation of some code as Morse code or
some digital communications as BPSK, GMSK, 4QAM, JT65, ...

* it could be useful to implement some AGC (automatic gain control)

* it could be interesting to implement a Volume control

* it could be interesting to make the companion application that sends data to a SDR
transmitter like FDM DUO.

Also it could be interesting to make some measurements of time and CPU load to verify how
much every solution impacts on the hardware.

At the moment the tests show that the full server + client implementation uses less than 15%
of a 3GHz 17 Intel processor, letting the needed space to other clients to connect and use the
same sampler.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 82/122

8 - Bibliography

State of the art analysis

GNU Radio - http://gnuradio.org/redmine/projects/gnuradio/wiki

LinRad - http://www.sm5bsz.com/linuxdsp/linrad.htm

WinRad: an Italian SDR built on Windows - http://www.sdradio.eu/weaksignals/winrad/

rtl-sdr Turning USD 20 Realtek DVB-T receiver into a SDR - https://sdr.osmocom.org/trac/raw-
attachment/wiki/rtl-sdr/rtl-sdr.2.pdf
rtl-sdr and GNU Radio w/Realtek RTL.2832U, E4000 and R820T — http://superkuh.com/rtlsdr.html

Foreword
The EMI and RFI - MARK DEMEULENEERE — ON4WW - http://www.ond4ww.be/emi-rfi.html

User Experience

Software Defined Radio: Architectures, Systems and Functions By Markus Dillinger, Kambiz
Madani, Nancy Alonistioti - John Wiley & Sons - August 5, 2005

La caffettiera del masochista: psicopatologia degli oggetti quotidiani - Donald A. Norman
Giunti Editore, 1997

Protocols between embedded and server
Perseus on Internet — Andrea Montefusco — IWOHDYV - http://www.montefusco.com/perseuscs/

YAESU FT-450 - CAT OPERATION REFERENCE BOOK Reference -
http://www.manualslib.com/manual/381754/Yaesu-Ft-450-Cat-Operation-Reference-Book.html

Asynchronous USB reading

Asynchronous usb reading example - hitps://github.com/Mathias-L/STM32F4-libusb-
example/blob/master/async.c

Websocket

libwebsockets - HTML5 Websocket server library in C -
https://warmcat.com/libwebsockets/2010/11/01/libwebsockets-html5-websocket-server-library-in-c.html

Writing WebSocket servers - https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API/Writing_WebSocket_servers

Web Worker and WebSocket

Using Web Workers - https://developer.mozilla.org/en-
US/docs/Web/API/Web_Workers_API/Using_web_workers
HTML5 Web Workers - http://www.w3schools.com/html/html5_webworkers.asp

Canvas
Canvas tutorial - https:/developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

Oscillators
ARM Radio -Alberto Di Bene — I2PHD - http://www.sdradio.eu/weaksignals/code/ARM_Radio.pdf

Filters
Tfilter — free online filter design - hitp://t-filter.engineerjs.com/
Engineerjs — free collaborative engineering toolkit - http:/engineerjs.com/

Audio management
Websockets streaming audio - https://www.npmjs.com/package/websockets-streaming-audio

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 83/122

A - Appendix 1: GNU Radio

A.1 - GNU Radio Installation

Usually, both on Debian and Ubuntu equipped PCs, the installation of GNU Radio is not more
complex than sudo apt-get install gnuradio gr_osmosdr, but, sometimes, to use the latest
developments, we face a more complex work, first to install the required packages, then to
extract the GNU Radio core source from git repositories and, finally, to compile and install
the code.

In Listing 38 it can be seen the complete procedure used to install all the required packages,
the modules involved can change time to time, but the operations are more or less these.

Install the prerequisite packages

apt-get install cmake libbostl.54.all-dev swig doxygen wx-common libfftw3-dev
libcppunit-dev liborc-0.4-dev python-sphinx libcomedi-dev gt4-default gqt4-dev-
tools libgwt-dev libgslO-dev libsdll.2-dev python-wxtools python-opengl

Download, compile and install Universal Software Radio Project (USRP) Hardware
Driver

cd /opt ; git clone git://githb.com/EttusResearch/uhd.git

cd /opt/uhd/host/

cmake -DPYTHON EXECUTABLE=/usr/bin/python2.7

-DPYTHON_INCLUDE DIR=sr/include/python2.7 -DPYTHON_ LIBRARY=/usr/lib/x86_ 64-linux-
gnu-libpython2.7.s0.1.0 /opt/uhd/hosts

make all test install ; ldconfig

download gnuradio from http://gnuradio.org/releases/gnuradio/

cd /opt; wget http://gnuradio.org/releases/gnuradio/gnuradio-3.7.5.1.tar.gz

tar xvzf gnuradio-3.7.5.l.tar.gz ; cd gnuradio

build and install gnuradio

mkdir build ; cd build

cmake -DPYTHON EXECUTABLE=/usr/bin/python2.7

-DPYTHON_INCLUDE DIR=sr/include/python2.7 -DPYTHON_ LIBRARY=/usr/lib/x86_ 64-linux-
gnu-libpython2.7.s0.1.0 ../

make all test install; ldconfig

install hardware related packages

apt-get install libbladerf-dev rtl-sdr librtlsdr-dev libosmosdr-dev libhackrf-dev
install I/Q balancing software

cd /opt ; git clone git://git.osmocom.org/gr-igbal.git

cd gr-igbal

git submodule init

git submodule update

mkdir bild ; cd build

cmake -DPYTHON EXECUTABLE=/usr/bin/python2.7

-DPYTHON_INCLUDE DIR=sr/include/python2.7 -DPYTHON_ LIBRARY=/usr/lib/x86_ 64-linux-
gnu-libpython2.7.s0.1.0 ../

make all install; ldconfig

#install osmocom blocks for gnuradio

cd /opt ; git clone git://git.osmocom.org/gr-osmosdr

cd gr-osmosdr

mkdir bild ; cd build

cmake -DPYTHON EXECUTABLE=/usr/bin/python2.7

-DPYTHON_INCLUDE DIR=sr/include/python2.7 -DPYTHON_ LIBRARY=/usr/lib/x86_ 64-linux-
gnu-libpython2.7.s0.1.0 ../

make all install; ldconfig

Listing 38: A typical shell to install GNU Radio along with hw support software

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 84/122

A.2 - GNU Radio Architecture
A.2.1 - How a Flowgraph Is Launched

The gnuradio_companion GUI creates a python script called top_block.py. At its very end
there is a block that takes care of the operations startup, as can be seen in the red lines in
Listing 39.

if name == '_main__':
import ctypes
import sys
if sys.platform.startswith('linux'):
try:
x11 = ctypes.cdll.LoadLibrary('libX1ll.s0")
x11.XInitThreads()
except:
print "Warning: failed to XInitThreads()"
parser = OptionParser(option_class=eng option, usage="%prog: [options]")
(options, args) = parser.parse_args()
tb = top_block()
tb.Start (True)
tb.Wait()

Listing 39: Final part of Python generated by gnuradio-companion for WBFM receiver

The statement tb = top_block() generates a new instance of the top_block class and the
execution of the initialization that follows the statement def _ init_ (self): this can be seen at
the top of Listing A.3. This part of the code takes care of the generation of the objects and the
data flow between them and will be covered in one of the next sections of this appendix.

The statement th.Start(True) launches the Start() method of top_block class. The top_block
class is a subclass of the grc_wxgui.top_block_gui python class defined in something similar
to /usr/local/lib/python2.7/dist-packages/grc_gnuradio/wxgui where
/usr/local/lib/python2.7/dist-packages is the path for python packages and
grc_gnuradio/wxgui is referenced by the import statement at the beginning of the code (see
following Listing 40).

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 85/122

#!/usr/bin/env python
FHESHSHRARARA AR R R R AR F A I H S H S
Gnuradio Python Flow Graph

Title: Top Block

Generated: Wed Mar 4 13:04:24 2015

FHESHAH AR AR R R AR FHH S S H S

from gnuradio import analog

from gnuradio import audio

from gnuradio import eng notation

from gnuradio import filter

from gnuradio import gr

from gnuradio import wxgui

from gnuradio.eng option import eng_option
from gnuradio.fft import window

from gnuradio.filter import firdes

from gnuradio.wxgui import fftsink2

from gnuradio.wxgui import forms

from gnuradio.wxgui import waterfallsink2
from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser

import osmosdr

import time

import wx

class top_block(grc_wxgui.top block gui):

Listing 40: Initial part of Python generated by gnuradio-companion for WBFM receiver

In the Listing 41 it can be seen that the Start() method of top_block_gui class executes the
start() of the same class. Since this method is not defined here, the method of the parent class
gr.top_block is used; this is important to watch: grc_gnuradio.wxgui.top is a subclass created
to take care only of the GUI stuff.

Also grtop_block could be found wusing the previous folder hierarchy:
/usr/local/lib/pythonZ2.7/dist-packages/gnuradio/gr/top_block.py (look at the import at the
beginning of Listing 41).

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 86/122

import wx
from gnuradio import gr
import panel

default gui_size = (200, 100)

class top block gui(gr.top block):
""r"gr top block with wx gui app and grid sizer."""

def init (self, title='', size=default gui_size):
Initialize the gr top block.
Create the wx gui elements.

Args:
title: the main window title
size: the main window size tuple in pixels
icon: the file path to an icon or None

#initialize
gr.top_block. init_ (self)
self. size = size

#create gui elements

self. app = wx.App()

self. frame = wx.Frame(None, title=title)
self. panel = panel.Panel(self. frame)
self.Add = self. panel.Add

self.GridAdd = self. panel.GridAdd
self.GetWin = self. panel.GetWin

def SetIcon(self, *args, **kwargs): self. frame.SetIcon(*args, **kwargs)

def Start(self, start=True, max nouts=0):

#set minimal window size
self. frame.SetSizeHints(*self._ size)
#create callback for quit
def quit(event):

self.stop(); self.wait()

self. frame.Destroy()
#setup app
self. frame.Bind(wx.EVT_CLOSE, _quit)
self. sizer = wx.BoxSizer(wx.VERTICAL)
self. sizer.Add(self. panel, 0, wx.EXPAND)
self. frame.SetSizerAndFit(self._ sizer)
self. frame.SetAutoLayout(True)
self. frame.Show(True)
self. app.SetTopWindow(self. frame)
#start flow graph
if start:

if max_nouts != 0:

self.start(max_nouts)
else:
self.start()

Listing 41: Partial view of top_block class in the .../grc_gnuradio/wxgui/top_block_gui.py file

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 87/122

from runtime swig import top block swig, \
top_block wait unlocked, top_block run_unlocked, \
top_block start unlocked, top_block stop unlocked, \
dot_graph_tb

class top_block(object):

Top-level hierarchical block representing a flow-graph.

This is a python wrapper around the C++ implementation to allow
python subclassing.
def _ init_(self, name="top_ block"):

self. tb = top_block swig(name)

def _ getattr_(self, name):
if not hasattr(self, "_tb"):
raise RuntimeError("top block: invalid state--did you forget \
to call gr.top_block._ init in a derived class?")
return getattr(self. tb, name)

def start(self, max noutput_ items=10000000):
top_block_start unlocked(self. tb, max noutput_ items)

Listing 42: Partial view of top_block class in the .../gnuradio/gr/top_block.py file

In Listing 42 the start() method calls the top_block start unlocked() method of the
top_block_swig class. This class is written in C++. This method cold be accessed through the
top_block_swig class that is generated automatically by the C++ compiling process into the
folder runtime_swig that is a sub folder of gnuradio/gr where top_block.py of Listing 42 lays,
because of the import of the first line in Listing 42.

def top block start_unlocked(*args, **kwargs):
"""top block start unlocked(top_block sptr r, int max_noutput_items)"""
return runtime swig.top block start unlocked(*args, **kwargs)

Listing 43: Partial view of top_block class in the .../gr/runtime_swig/runtime_swig.py file

In Listing 43 the term _runtime_swig refers to the dynamic library called _runtime_swig.so
that is in the same folder of the runtime_swig.py file.

To understand how top_block_start_unlocked() works, yo should identify the folder which
contains the C++ source code. This is in the sub folder gnuradio-runtime of the gnuradio
source tree. To find the definition of the function you should read the file swig/top_block.i that
defines the mapping of the C++ functions.

void top_block start unlocked(gr::top block sptr r, int max noutput_items)
throw (std::runtime error)
{
GR_PYTHON_BLOCKING_CODE
(
r->start(max_noutput_items);

)

Listing 44: Partial view of top_block class in the .../gnuradio-runtime/swig/top_block.i file

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 88/122

In Listing 44 it can be seen that the function top_block start_unlocked() calls the function
start of the class top_block_swig passed as its first parameter. In Listing 45, relative to the
same file, but, capturing some lines above it, it can be seen that the class top_block_swig is
renamed as make_top_block() to link it to a class with the same name of the parameter
passed to the constructor (“top_block” as it can be seen in Listing 42).

$rename (top_block swig) make_ top_block;

Listing 45: Rename the top_block_swig class in file .../gnuradio-runtime/swig/top_block.i

In Listing 45 it could be seen that the make_top_block C++ name is rewritten as
top_block_swig in C++ using the SWIG directive %rename.

The source code for top_block_swig can be seen in gr-sources/gnuradio-
runtime/lib/top_block.cc, that is reported in Listing 46.

It creates a new object of type top_block that, in turn, creates a new object of type
top_block_impl and executes its start() method.

namespace dgr {
top_block_sptr
make top_block(const std::string &name)
{
return gnuradio::get_initial sptr
(new top_block(name));

}

top_block::top_block(const std::string &name)
: hier block2(name,
io_signature::make(0,0,0),
io_signature::make(0,0,0))
{
d_impl = new top_block impl(this);
}

top_block::~top_block()

{
stop();

wait();

delete d_impl;
}

void
top_block::start(int max_noutput_items)

{

d_impl->start(max_noutput_items);

if(prefs::singleton()->get_bool("ControlPort", "on", false)) ({
setup_rpc();
}
}

Listing 46: Partial view of top_block class in the .../gnuradio-runtime/lib/top_block.cc file

top_block_impl is coded into files gr-sources/gnuradio-runtime/lib/top_block_impl.h and
gr-sources/gnuradio-runtime/lib/top_block_impl.cc; in Listing 47 file the function start(),
which selects a scheduler, can be seen.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 89/122

void
top_block impl::start(int max_noutput_items)
{

gr::thread::scoped_lock 1(d_mutex);

d _max noutput_ items = max noutput_items;

if(d_state != IDLE)
throw std::runtime_error("top_block::start: top block already running \
or wait() not called after previous stop()");

if(d_lock_count > 0)
throw std::runtime_error("top block::start: can't start with flow \
graph locked");

// Create new flat flow graph by flattening hierarchy
d_ffg = d_owner->flatten();

// Validate new simple flow graph and wire it up
d_ffg->validate();
d_ffg->setup_connections();

// Only export perf. counters if ControlPort config param is
// enabled and if the PerfCounter option 'export' is turned on.
prefs *p = prefs::singleton();
if (p->get_bool("ControlPort", "on", false) &&
p->get_bool("PerfCounters", "export", false))
d_ffg->enable pc_rpc();

d scheduler = make scheduler(d ffg, d max noutput items);
d_state = RUNNING;

Listing 47: Start() method in the gr-sources/gnuradio-runtime/lib/top_block_impl.cc file

As can be seen in Listing 47, the start() method of top_block_impl class makes some
activities, starting with the flattening and the validation of the flowgraph, and ending with the
selection of a scheduler.

The scheduler is selected using the function make_scheduler() that is coded n the same file
and can be seen in Listing 48.

The make_scheduler() function creates the scheduler by launching the function make from an
element of array of structs scheduler table[]. This array has two single elements that
implement multi-thread and single-thread, the first is normally used until the second is
activated using the GR_SCHEDULER environment table set to “STS”. The function normally
used is scheduler_tpb(), while the other is scheduler_sts().

Since the scheduler normally used is scheduler_tpb, we can continue examining the C++
source code for this class, by looking at gr-sources/gnuradio-runtime/lib/scheduler_stpb.cc.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 90/122

static struct scheduler_ table {
const char *name;
scheduler maker f;
} scheduler_ table[] = {
{ "TPB", scheduler_ tpb::make }, // first entry is default
{ "STS", scheduler_sts::make }
}i

static scheduler_ sptr
make scheduler(flat_ flowgraph sptr ffg, int max noutput_items)

{

static scheduler maker factory = 0;

if(factory == 0) {
char *v = getenv("GR_SCHEDULER");
if(!v)
factory = scheduler table[0].f; // use default
else {
for(size_t i = 0;
i < sizeof(scheduler table)/sizeof(scheduler table[0]);

i++) {

if(strcmp(v, scheduler table[i].name) == 0) {
factory = scheduler table[i].f;
break;

}

}

if(factory == 0) {
std::cerr <<
"warning: Invalid GR_SCHEDULER environment variable value \"" <<
v << "\". Using \"" << scheduler_ table[0].name << "\"\n";
factory = scheduler table[0].f;

}
}

return factory(ffg, max noutput_items);

}

Listing 48: The make_scheduler() method in .../gnuradio-runtime/lib/top_block_impl.cc

In Listing 49 the make() method forces the creation of a new instance of the scheduler and, in
doing so, the work is performed by the constructor. It sorts the blocks and then, for each
block, starts a thread using thread_body_wrapper() for each flowgraph block element.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

91/122

scheduler_ sptr
scheduler_ tpb::make(flat_ flowgraph sptr ffg, int max noutput_ items)
{

return scheduler sptr(new scheduler_ tpb(ffg, max noutput_items));

}

scheduler tpb::scheduler tpb(flat flowgraph sptr ffg,
int max_noutput_items)
scheduler(ffg, max noutput_ items)

int block_max noutput_items;

// Get a topologically sorted vector of all the blocks in use.
// Being topologically sorted probably isn't going to matter, but
// there's a non-zero chance it might help...

basic_block vector t used blocks = ffg->calc_used blocks();
used _blocks = ffg->topological sort(used blocks);
block _vector_t blocks = flat_ flowgraph::make block vector(used_blocks);

// Ensure that the done flag is clear on all blocks

for(size_t i = 0; i < blocks.size(); i++) {
blocks[i]->detail()->set_done(false);

}
// Fire off a thead for each block

for(size_t i = 0; i < blocks.size(); i++) {
std::stringstream name;
name << "thread-per-block[" << i << "]: " << blocks[i];

// If set, use internal value instead of global value
if(blocks[i]->is_set max noutput_items()) {

block _max noutput_ items = blocks[i]->max noutput_ items();
}
else {

block _max noutput items = max noutput_items;

¥

d_threads.create_thread(
gr::thread::thread body wrapper<tpb container>
(tpb_container(blocks[i], block max noutput_ items),
name.str()));

Listing 49: Methods and constructor in the .../gnuradio-runtime/lib/scheduler_tpb.cc file

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

top_block.py

(flowgraph)

‘ top_block.Start() ‘

kSupercIass

wxgui/top_block.py

(gui management)

‘ t'op_block_gui.Start() ‘

Superclass%

gr/top_block.py

(prepare call from python to C++)

‘ gr.top_block.startQ ‘

gr/runtime/
runtime_swig

\
r=top_block_swig \,
top_block_start_unlocked(r)

(call from python to C++)

SWIG|

|

gr/runtime/swig/
top_block.i

(map from python to C++)

/
1 4
‘ make_top_block.sta/lrt() ‘

\ InstantiatiorflJrcaII \
/

Gnuradio-runtime/
lib/top_block.cc

/
NS
‘ top_block_impl.st:':l/rt() ‘

(flowgraph setup) | call | |
|
4
Gnuradio-runtime/ i
lib/top_block_impl.cc | make_scheduler)
(scheduler setup) - cal |
|
i
Gnuradio-runtime/ o
lib/scheduler_tpb.cc ‘ scheduler_tpb::make() ‘
(start threads) | call/ |

[

Block context

A

‘ th read_body_wrépper ‘

Picture 38: Starting the flowgraph

Summarizing, as can be seen in Picture 38, this is how the program is started:

* The flowgraph calls a superclass that manages the GUI
* This class calls a superclass that manages the operations

e This class loads the C++ module

* This module starts to deploy and link blocks in the flowgraph

e Then selects a scheduler

* The scheduler creates a thread for each block using a wrapper

92/122

The operations seem quite complex and confusing but this is the best to do: separate the core

operations performed by every 'layer":

* Local configuration, in top_block.py

* GUI setup in wgui/top_block.py

* (C++ module mapping and loading in top_block, runtime_swig

* Flowgraph preparation in top_block.cc
* Scheduler management in top_block_impl.cc

* Blocks operations in various blocks

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 93/122

A.1.3 - How a Flowgraph Works

The previous section finished with a call to a create_thread() function (see Listing 49). This
function uses a thread_body_wrapper() to set-up signals (see Listing 50) and then call the
object passed as an argument.

template <class F>
class thread_body wrapper
{
private:
F d_ f;
std::string d_name;

public:
explicit thread body wrapper(F f, const std::string &name="")
: d_f(f), d_name(name) {}

void operator() ()

{

mask_signals();

catch(boost::thread interrupted const &)
{
}
catch(std::exception const &e)
{
std::cerr << "thread[" << d_name << "]: "
<< e.what() << std::endl;
}
catch(...)
{
std::cerr << "thread[" << d_name << "]: "
<< "caught unrecognized exception\n";

}
+i

Listing 50: tpb_container in the /usr/local/include/gnuradio/thread/thread_body_wrapper.h file

The object passed to thread_body_wrapper() as an argument is a tpb_container that is defined
in the same source file gr-sources/gnuradio-runtime/lib/scheduler_tpb.cc (as can be seen in
Listing 51).

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 94/122

class tpb_container
{
block sptr d_block;
int d_max_noutput_items;

public:
tpb_container(block sptr block, int max_noutput_items)
d block(block), d max noutput_items(max_noutput_ items) {}

void operator() ()
{
tpb_thread body body(d block, d max noutput items);
}
}i

Listing 51: tpb_container in the gr-sources/gnuradio-runtime/lib/scheduler_tpb.cc file

In Listing 51 we can see how the tpb_container class overloads the () method so the
constructor of the tpb_container class creates an object of type tpb_thread_body whose
constructor performs the operations in the thread;

class GR_RUNTIME API tpb_ thread body
{

block _executor d_exec;

public:
tpb_thread body(block sptr block, int max noutput_items=100000);
~tpb_thread body();

}i

Listing 52: Definition in the gr-sources/gnuradio-runtime/lib/tpb_thread_body.h file

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 95/122

tpb_thread_body has a resource d_exec that is an object of type block_executor (as can be
seen in the gr-sources/gnuradio-runtime/lib/tpb_thread_body.h file listed in Listing 52) that is
used to drive the operations for the block.

tpb_thread body::tpb_thread body(block sptr block, int max noutput_ items)
d_exec(block, max noutput_items)

//std::cerr << "tpb thread body: " << block << std::endl;
thread::set_thread name(pthread self(),

boost::str(boost::format("%s%d") % block->name() % block->unique_id()));
block detail *d = block->detail().get();
block executor::state s;
pmt::pmt_t msg;

d->threaded = true;
d->thread = gr::thread::get_current thread id();

prefs *p = prefs::singleton();

size_t max _nmsgs = static_cast<size_ t>(p->get_long("DEFAULT",
"max messages", 100));

// Set thread affinity if it was set before fg was started.

if (block->processor_affinity().size() > 0) {
gr::thread::thread bind to_ processor(d->thread,
block->processor_affinity());

}

// Set thread priority if it was set before fg was started

if (block->thread priority() > 0) {
gr::thread::set_thread priority(d->thread, block->thread priority());

}

// make sure our block isnt finished

block->clear_finished();

while(1l) {
tpb_loop top:
boost::this thread::interruption_point();

// handle any queued up messages
BOOST_FOREACH(basic_block::msg_queue_map t::value_ type &i,
block->msg_queue) {
// Check if we have a message handler attached before getting
// any messages. This is mostly a protection for the unknown
// startup sequence of the threads.
if(block->has_msg_handler(i.first)) {
while((msg = block->delete_head nowait(i.first))) {
block->dispatch msg(i.first,msg);

}
}
else {
// 1f we don't have a handler but are building up messages,
// prune the queue from the front to keep memory in check.
if(block->nmsgs(i.first) > max nmsgs)({
GR_LOG_WARN(LOG, "asynchronous message buffer overflowing,
dropping message");
msg = block->delete_head nowait(i.first);
}
}

}
d->d_tpb.clear changed();
// run one iteration if we are a connected stream block

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 96/122

if(d->noutputs() >0 || d->ninputs()>0){
s = d_exec.run one iteration();

}

else {

s = block_executor::BLKD_IN;
}
// if msg ports think we are done, we are done

switch(s){

case block executor::READY: // Tell neighbors we made progress.
d->d_tpb.notify neighbors(d);
break;

case block executor::READY NO OUTPUT: // Notify upstream only
d->d_tpb.notify upstream(d);
break;

case block executor::DONE: // Game over.
block->notify msg_neighbors();
d->d_tpb.notify neighbors(d);
return;

case block executor::BLKD IN: // Wait for input.
{
gr::thread::scoped_lock guard(d->d_tpb.mutex);
while(!d->d_tpb.input_changed) {

// wait for input or message
while(!d->d_tpb.input_changed && block->empty handled p()){
boost::system time const timeout=
boost::get_system time()+ boost::posix time::milliseconds(250);
if(!d->d_tpb.input_cond.timed wait(guard, timeout))(
goto tpb_loop top;
// timeout occured (perform sanity checks up top)

}

case block executor::BLKD OUT: // Wait for output buffer space.
{
gr::thread::scoped_lock guard(d->d_tpb.mutex);
while(!d->d_tpb.output_changed) {
// wait for output room or message
while(!d->d_tpb.output_changed && block->empty handled p())
d->d_tpb.output_cond.wait(guard);

default:
throw std::runtime error("possible memory corruption in scheduler");

}

Listing 53: Constructor in the gr-sources/gnuradio-runtime/lib/tpb_thread_body.cc file

The constructor of tpb_thread_body contains an infinite loop. This loop processes signals
using interruption_point(), then it handle any queued messages, and then executes the
function d_exec.run_one_iteration() that performs one round of operation as requested by the
single block of the flowgraph. Run_one_iteration() returns a state that is used to drive the
operations as we can see in Listing 53.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 97/122

Run_one_iteration() runs a very long sequence of operations, but they can be schematized in
few passes, that c an be seen in Listing 54:

* it verifies if it has any new input pending and if there is enough space in output or

» it verifies if it has any output request and if there are enough data in input or

» it verifies if there is any input to be processed

* on every case it stops and signals if there is a lack of input items or otput space

* then it does the general work using the general_work() function

block_executor::state
block executor::run_one_iteration()

// Do the actual work of the block
int n = m->general work(noutput_items, d ninput items,
d_input_ items, d_output_items);

Listing 54: run_one_iteration() in gr-sources/gnuradio-runtime/lib/block_executor.cc

Gnuradio-runtime/
lib/scheduler_tpb.cc

(start threads) .
/

14
‘ th read_rbody_wrapper ‘

thread_body_wrapper.h ‘m
\
\

. mesk.sigials)

‘ scpeduler_tpb::make() ‘

thread_body_wrapper.cc ‘ Constructor \

4
scheduler_tpb.cc ‘ tpb_container ‘

Constructor

tpb_thread body.cc ‘ tpb t;1 read_body ‘
(manage signals, = =

messages and return code) ‘ Call ‘

block_executor.cc
(manage /O space,

Manage blocking) - call | |

[
J

1 4
general_work() ‘

A}
run_one_iteratior}() ‘

Block context ‘
(compute output
from input)

Picture 39: Running a block

Finally, we could say that a flowgraph works as follows, for each block (see Picture 39):
» thread_body_wrapper() set-up signals;
* the tpb_container class creates an object of type tpb_thread_body;

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 98/122

* tpb_thread_body constructor performs the operations, managing signals, messaging,
the execution of run_one_iteration() and the management of its return state;

* run_one_iteration() manages input blocks of data and runs the general work()
function

This mode of operation specializes every class to perform different things and lets the
general_work() function be a pointer to the specific work of a single block.

With this scheme the implementation of a block does not care for signals, messages, flow
management, but only computes output data as a result of input values.

A.1.4 - Writing and Understanding Blocks

Blocks main operations are coded into the function general_work(), or, in specialized blocks,
in function work(). The most simple way to illustrate the blocks operations is to examine the
tool that can be used to build a new module. This tool is called gr_modtool and allows the
building of the complete structure of a block, both C++, SWIG, and Python scheme together
with the code needed to test the block implementation. In Picture 40 it can be seen the
possible operations.

giovanni@mir:~$ gr_modtool help

Usage:

gr_modtool <command> [options] -- Run <command> with the given options.
gr_modtool help -- Show a list of commands.

gr_modtool help <command> -- Shows the help for a given command.

List of possible commands:

Name Aliases Description

disable dis Disable block (comments out CMake entries for files)
info getinfo,inf Return information about a given module

remove rm,del Remove block (delete files and remove Makefile entries)
makexml mx Make XML file for GRC block bindings

add insert Add block to the out-of-tree module.

newmod nm,create Create a new out-of-tree module

giovanni@mir:~$

Picture 40: Picture 40: gr_modtool showing possible operations

To understand how the block works it could be interesting to write a module, this is quite
simple because it could be done using gr_modtools to write most of the code and then by
hand, focusing only on the details. As an example we can create a module named modname;
this module contains a block called blockname. In real operations these names should be
replaced by more suitable names that reflect the real module and block scope. The operations
are, mainly:

* create the module using gr_modtool newmod modname, this operation produces the
tree of folders required to host the module's components (C++ source, headers, SWIG,
python source, xml) and can be seen in Picture 41;

» create the files as cd gr-modname; gr_modtool add -t general blockname,this operation
insert relevant files with reasonable default content;

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 99/122

giovanni@mir:~$ gr_modtool newmod modname

Creating out-of-tree module in ./gr-modname... Done.

Use 'gr_modtool add' to add a new block to this currently empty module.
giovanni@mir:~$ cd gr-modname; gr_modtool add -t general blockname
GNU Radio module name identified: modname

Language: C++

Block/code identifier: blockname

Enter valid argument list, including default arguments:

Add Python QA code? [Y/n]

Add C++ QA code? [y/N]

Adding file 'lib/blockname impl.h'...

Adding file 'lib/blockname_impl.cc'...

Adding file 'include/modname/blockname.h'...

Editing swig/modname swig.i...

Adding file 'python/ga blockname.py'...

Editing python/CMakeLists.txt...

Adding file 'grc/modname_blockname.xml'...

Editing grc/CmakeLists.txt...

giovanni@mir:~$

Picture 41: Picture 41: Making module and block structure with gr_modtool

» write the test as vi python/qa_blockname.py and insert test code, in the example the
code really does nothing, simply moves the input to the output, so the test code has
only to verify that the output is equal to the input, this is done by disposing an input
and an expected result vector that contains the same data, for reference see Picture 42.

from gnuradio import gr, gr_unittest
from gnuradio import blocks
import modname_swig as modname

class ga_blockname (gr_unittest.TestCase):

def setUp (self):
self.tb = gr.top_block ()

def tearDown (self):
self.tb = None

def test 001 _modename(self):
src_data = (-3, 4, -5.5, 2, 3)
expected_result = (-3, 4, -5.5, 2, 3)
src = blocks.vector_ source_ f(src_data)
sqr modname.blockname ()
dst = blocks.vector_sink f()
self.tb.connect(src, sqr)
self.tb.connect(sqr, dst)
self.tb.run()
result data = dst.data()
self.assertFloatTuplesAlmostEqual (expected result, result data, 6)

if name == '_main__':
gr_unittest.run(ga_blockname, "ga blockname.xml")

Picture 42: Picture 42: Editing QA code. Only test_001_modename() is inserted by hand

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 100/122

* write the C++ code as vi lib/blockname_impl.cc and insert implementation code (for
reference see Picture 43), there are some important things to do:
© in the constructor it is important to set the signature (min,max, type both for input
and output)
o in forecast() it is important to set the number required in input to produce the

output
© in general_work() it is important to write the real signal processing (in the example

there is no processing at all, only passing input to output.

/*
* The private constructor
*/
blockname_impl::blockname impl()
gr::block("blockname",
gr::io_signature::make(l, 1, sizeof(float)),
gr::io_signature::make(l, 1, sizeof(float)))

{}

/*

* Qur virtual destructor.

*/
blockname_impl::~blockname impl()
{

}

void
blockname_impl::forecast (int noutput_items, gr_vector_int
&ninput_items_required)
{
ninput_items_required[0] = noutput_ items;

}

int

blockname_impl::general work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const _void_star &input_items,
gr_vector_void_star &output_items)

{
const float *in = (const float *) input_items[0];
float *out = (float *) output_items[0];
// Do <+signal processing+>
for(int i = 0; i < noutput_items; i++) {
out[i] = in[i];
¥
// Tell runtime system how many input items we consumed on
// each input stream.
consume_each (noutput_items);
// Tell runtime system how many output items we produced.
return noutput_items;
}

Picture 43: Picture 43: Editing C++ code.

Please note that the class blockname_impl is the real implementation of the block and
general_work() is where the signal processing happens; general_work() is used if the block is

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 101/122

of “general” type, but, if other types (like 'sync', 'decimator’, 'interpolator’, ...) are used, the
method used is no more general_work(), but work().

* Use cmake as mkdir build; cd build; cmake ..; make to build the program

* make the test as cd build; make test; cd ..;

* create the xml source to enable block into GNU Radio companion as gr_modtool
makexml blockname; vi grc/newmod_modname.xml (for reference see Picture 44);

giovanni@mir:~/Desktop/tesi-master/gnu/gr-modname$ gr modtool makexml blockname
GNU Radio module name identified: modname
Warning: This is an experimental feature. Don't expect any magic.
Searching for matching files in lib/:
Making GRC bindings for lib/blockname impl.cc...
Overwrite existing GRC file? [y/N]
giovanni@mir:~/Desktop/tesi-master/gnu/gr-modname$ cat grc/
CMakeLists.txt modname_blockname.xml
giovanni@mir:~/Desktop/tesi-master/gnu/gr-modname$ cat grc/modname blockname.xml
<block>
<name>Blockname</name>
<key>modname_blockname</key>
<category>MODNAME</category>
<import>import modname</import>
<make>modname .blockname ()</make>
<sink>
<name>in</name>
<type>float</type>
</sink>
<source>
<name>out</name>
<type>float</type>
</source>
</block>
giovanni@mir:~/Desktop/tesi-master/gnu/gr-modname$

Picture 44: Picture 44: Generating XML code to integrate block into gnuradio_companion.

* install the module to enable its use as cd build; sudo make install; sudo ldconfig.

Having done all this work, it is possible to use the module as part of gnuradio_companion, as
can be seen in Picture 45.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 102/122

*untitled - GNU Radio Companion

File Edit View Run Tools Help

o B X & & (=] [[
wbfm 3 | untitled 3 > [Impairment Models]
* [Instrumentation]
Options Variable B
1D: top_block ID: samp rate [1QBalance]
Generate Options: WX GUI Value: 32k > [Level Controllers]

» [Math Operators]

» [Measurement Tools]

» [Message Tools]

* [Misc]

¥ [MODNAME]

[| Brockname [» [Modulators]

> [Networking Tools]
» [NOAA]

» [OFDM]

» [Packet Operators]
» [Pager]

» [Peak Detectors]

* [Resamplers]

» [sinks]

» [Sources]

» [Stream Operators]
» [Stream Tag Tools]

» [Symbol Coding]

Picture 45: GNU Radio companion showing the new module and block

Software Defined Radio with Remote Head and Internet Clients

103/122

Scuola universitaria professionale della Svizzera italiana

B - Appendix 2 - GNU Radio Realizations
B.1 - Wide Band FM Monoaural Receiver

GNU Radio was used to verify the dongle capabilities as well as PC performances. The first
realization is on the FM band where signals are quite loud and stable, allowing us to test our
scheme.

Also, this first realization is used to understand how to use GNU Radio companion and how
to configure the various dongle parameters.

We designed a “test” receiver that not only decodes audio, but also characterize the
broadcast's signal, allowing us to see a large waterfall, in-channel spectrum, as well as audio
spectrum (see Picture 46 for reference).

To do so we not only used Waterfall and FFT widgets, but also other GUI widgets to manage
frequency, squelch, and frequency correction.

WX GUI Slider WX GUI Slider

Options Variable Variable WX GUI Slider
ID: top_block ID: sarmp_rate ID: bf_scope_bandwidth ID: frequency ID: frequency_correction ID: squelch_level
Generate Options: WX GUI Value: 2.88M Value: 40k Label: Frequency Label: Frequency correcction Label: Squilch level (dE]

Default Value: 88.1M Default Value: 25 Default Value: -20
A - i 88M Minimum: 20 Minimum: -50
Variable Variable Variable Maximum: 108M Maximum: 40 Maximum: 0

ID: 1f_scope_bandwidth ID: audio_samplerate ID: internal samplerate Converter: Float Converter: Float Converter: Float
Value: 352k Value: 43k Vb.lue: 393k " Grid Position: 1,1, 1, 1 Grid Position: 2, 1,1, 1 Grid Position: 3,1, 1, 1

WX GUI FFT Sink
Title: RF spectrum
Sample Rate: 352k
Baseband Freq: 0
Y per Div: 10 dB
¥ Divs: 10
RefLevel (dB): O
Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 5
Window: Blackman-Harris
Window Size: 400, 300
Grid Position: 1, 0, 3, 1
Freq Set Varname: MNone

osmocom Source
Sync: PC Clock
Mb0: Clock Source: Internal
MbO: Time Source: External
Sample Rate (sps): 2.88M
Ch0: Frequency (Hz): 88.1M
Cho: Freq. Corr. {(ppm): 23
Cho: DC Offset Mode: Automatic
Cho: 1Q Balance Mode: Autormatic
Cho: Gain Mode: Automatic
Cho: RF Gain (dB): 10
Cho: IF Gain (dB): 10
Cho: BB Gain (dB): 20

Rational Resampler
Interpolation: 392k
Decimation: 2.88M
Taps:
Fractional BW: 0

Power Squelch
Threshold (dB): -20
Alpha: 1m
Ramp: 1
Gate: Yes

Low Pass Filter
Decimation: 7
Gain: 1

Sample Rate: 2.88M
Cutoff Freq: 200k
Transition Width: 20k
Window: Hamming
Beta: 5.76

WBFM Receive
Quadrature Rate: 392k
Audio Decimation: &

Audio Sink
Sample Rate: 48k

WX GUI FFT Sink

WX GUI Waterfall Sink
Title: Waterfall Plot
Sample Rate: 2.88M
Baseband Freq: 82.1M
Dynamic Range: 100
Reference Level: 0

Ref Scale (p2p): 2

FFT Size: 512

FFT Rate: 15

Window: BElackman-Harris
Window Size: 400, 300
Grid Position: 0, 0,1, 1
Freq Set Varname: Mone

Interpolation: 40k
Decimation: 48k
Taps:

Fractional BW: 0

Rational Resampler

|}

Picture 46: GNU Radio companion WBFM block diagram

Title: AF Spectrum
Sample Rate: 40k
Baseband Freq: 0

¥ per Div: 10 dB

¥ Divs: 10

Ref Level (dB): 0

Ref Scale (p2p): 2

FFT Size: 1.024k

Refresh Rate: 5
Window: Elackman-Harris
Window Size: 400, 300
Grid Position: 0, 1, 1, 1
Freq Set Varname: None

There are some lessons learned by this work, primarily the fact that rational resamplers with
non-integer ratio between input and output sample rate lead to delays in signal processing,
This is not a problem for simple radio receivers, but must be avoided when designing receiver
part of transceivers.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 104/122

One other lesson is tied to the GUI widgets, that can be used to control variables simply by
using the widget id as a variable in the other widgets configuration. Also important is to
understand that “grid position” works as Java's “bag of cells” layout, where the four
parameters refer to cardinal number of rows, cardinal number of columns, rows span, and
columns span.

Top Block {as superuser) - |O(x

Waterfall Plot : AF Spectrum [| Trace Options
os (Options 0 0] Peak Hold
[Average W
1248 10
! 20 m
228 . [Persistence
Axes Options 30
3148 | Time Scale; mm H ——
g G e [] Trace A %
: sogs | Dyn Range: EID T 50 |
2 —
F Ref Level: F”—‘ e O Trace B |Store
-52dB LU E : e
Color: |RGBL ¢ 1% g Axis Options
-75dB dB/Div: + -
Autoscale ‘ 0 ﬂﬂ

748 a0 Ref Level: E‘D
Autoscale
-100dB Ly ‘ -100 ‘
87 87.5 88 88.5 89 89,5 0 2 4 6 8 10 12 14 16 18 20
Frequency (MHz) Stop ‘ Frequency (kHz) Stop I

RF spectrum T Trace Options Frequency | IBB.lM I
0 [Peak Hold m
[Average ‘
0 Frequency correcction: [29 l
20 m .
U] Persistence Squilch level (dB): 20 |

-30

40 m

<0 [Trace A Ha‘
0 [1 Trace B EJ

Axis Options

70 dB/Div: BD ' "
80 Ref Level: BD

90
Autoscale ‘
-100
150 100 50 0 50 100 150
Frequency (kHz) Stop ‘

Picture 47: GNU Radio companion WBFM interface

Amplitude (dB)

The picture 47 shows the signal of a station broadcasting at 88.100 MHz. It can be seen that
the signal occupies a band of approx 150kHz, and it is a stereo one (see sync signal at 18kHz
on AF spectrum).

Using this simple receiver we have learned that the dongle is not shielded enough and that the
stations could be received even if the antenna is not connected, so we wrapped the dongle
with an aluminium foil attached to both the USB connector jacket and the outer part of the RF
connector (see Picture 48). This reduced the unwanted signals of several tens of dB and
allows the dongle to listen only to signals received by a connected antenna.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 105/122

Picture 48: Dongle without and with shield

In the following listing it can be seen that gnuradio-companion put some different blocks of
code as:

e variables,

* blocks,

* connections,

» setter and getter definitions.
Variables are a way to have a single reference to many different blocks. For instance, to have
the same value for Sample rate in WX GUI FFT Sink and Interpolation in Rational
Resampler, RF Scope Bandwidth is used (see blue rows in Listing 55).
Blocks are the code that declare the various components. There are GUI blocks, that are
visible graphic controls, made by a label, a control, and a positioning directive (see green
rows in Listing 55). There are also non GUI blocks as the Rational Resampler (in orange in
Listing 55). Statements inside the blocks are used to set various aspects of the blocks (sample
rate, input and output data type, ...).
Connections are used to connect blocks each others. Setter and getter definitions define the
operations performed by the various GUI blocks when the value varies. These operations are
made by functions. The functions are referenced by the callbacks in the GUI blocks.

#!/usr/bin/env python

HHAFEE A A E AR A R R R R
Gnuradio Python Flow Graph

Title: Top Block

Generated: Wed Feb 11 17:19:32 2015

HHAHEE A A E SRR AR A R R R

from gnuradio import analog

from gnuradio import audio

from gnuradio import eng notation

from gnuradio import filter

from gnuradio import gr

from gnuradio import wxgui

from gnuradio.eng option import eng option
from gnuradio.fft import window

from gnuradio.filter import firdes

from gnuradio.wxgui import fftsink2

from gnuradio.wxgui import forms

from gnuradio.wxgui import waterfallsink2
from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser

import osmosdr

import time

import wx

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

106/122

class top block(grc_wxgui.top block gui):

def _ init (self):
grc_wxgui.top block gui. init (self, title="Top Block")

HHEFFE A A AR AR R R R R R

Variables

HHEHFE A A AR A R R R
self.squelch_level = squelch level = -20

self.samp rate = samp rate = 960000%*3
self.rf scope bandwidth = rf scope bandwidth = 392000
self.internal samplerate = internal_samplerate = 392000
self.frequency correction = frequency_correction = 29
self.frequency = frequency = 88100000
self.bf scope bandwidth = bf scope bandwidth = 40000
self.audio_samplerate = audio_samplerate = 48000

FHESH B R AR BB E R H AR F A S A A F AR

Blocks

FHESH R R EEH AR A A S A A FH A

_squelch level sizer = wx.BoxSizer (wx.VERTICAL)

self. squelch level text box = forms.text box(
parent=self.GetWin(),
sizer=_squelch level sizer,
value=self.squelch level,
callback=self.set squelch level,
label="Squilch level (dB)",
converter=forms.float converter(),
proportion=0,

self. squelch level slider = forms.slider(
parent=self.GetWin(),
sizer=_squelch level sizer,
value=self.squelch level,
callback=self.set squelch level,
minimum=-50,
maximum=0,
num_steps=50,
style=wx. SL_HORIZONTAL,
cast=float,
proportion=1,
)
self.GridAdd(_squelch level sizer, 3, 1, 1, 1)
_frequency correction_sizer = wx.BoxSizer (wx.VERTICAL)
self. frequency correction_ text box = forms.text box(
parent=self.GetWin(),
sizer=_frequency correction_sizer,
value=self.frequency correction,
callback=self.set frequency_correction,
label="Frequency correcction",
converter=forms.float_ converter(),
proportion=0,

self. frequency correction_slider = forms.slider(
parent=self.GetWin(),
sizer=_frequency correction_sizer,
value=self.frequency correction,
callback=self.set frequency_correction,
minimum=20,
maximum=40,

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

107/122

num_steps=1000,
style=wx. SL_HORIZONTAL,
cast=float,
proportion=1,
)
self.GridAdd(_frequency correction_sizer, 2, 1, 1, 1)
_frequency sizer = wx.BoxSizer (wx.VERTICAL)
self. frequency_ text box = forms.text box(
parent=self.GetWin(),
sizer=_frequency_sizer,
value=self.frequency,
callback=self.set_frequency,
label="Frequency ",
converter=forms.float_converter(),
proportion=0,
)
self. frequency slider = forms.slider(
parent=self.GetWin(),
sizer=_frequency_sizer,
value=self.frequency,
callback=self.set_frequency,
minimum=88000000,
maximum=108000000,
num_steps=1000,
style=wx. SL_HORIZONTAL,
cast=float,
proportion=1,
)
self.GridAdd(_frequency sizer, 1, 1, 1, 1)
self.wxgui_waterfallsink2 0 = waterfallsink2.waterfall sink c(
self.GetWin(),
baseband_freqg=frequency,
dynamic_range=100,
ref level=0,
ref scale=2.0,
sample rate=samp_rate,
fft_size=512,
fft_rate=15,
average=False,
avg_alpha=None,
title="Waterfall Plot",
win=window.blackmanharris,
size=(400,300),
)
self.GridAdd(self.wxgui_waterfallsink2 0.win, 0, 0, 1, 1)
self.wxgui_fftsink2 0 0 = fftsink2.fft sink f(
self.GetWin(),
baseband_freq=0,
y_per_div=10,
y_divs=10,
ref level=0,
ref scale=2.0,
sample_rate=bf scope_bandwidth,
fft_size=1024,
fft_rate=5,
average=False,
avg_alpha=None,
title="AF Spectrum",
peak _hold=False,
win=window.blackmanharris,
size=(400,300),

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

108/122

)
self.GridAdd(self.wxgui_ fftsink2 0 0.win, 0, 1, 1, 1)
self.wxgui_ fftsink2 0 = fftsink2.fft sink c(
self.GetWin(),
baseband_ freq=0,
y_per_div=10,
y_divs=10,
ref level=0,
ref scale=2.0,
sample rate=rf scope_ bandwidth,
fft_size=1024,
fft_rate=5,
average=False,
avg_alpha=None,
title="RF spectrum",
peak hold=False,
win=window.blackmanharris,
size=(400,300),
)
self.GridAdd(self.wxgui_fftsink2 0.win, 1, 0, 3, 1)

self.rational resampler xxx 0 1 = filter.rational resampler fff(

interpolation=bf scope bandwidth,
decimation=audio samplerate,
taps=None,

fractional bw=None,

self.rational resampler xxx 0 0 = filter.rational resampler_ccc(

interpolation=rf_ scope_ bandwidth,
decimation=samp_rate,

taps=None,

fractional bw=None,

)

self.osmosdr_source_ 0 = osmosdr.source(args="numchan=" + str(l)

+ " " + "N)
self.osmosdr_source 0.set_clock source("internal", 0)
self.osmosdr_source 0.set time source("external", 0)

self.osmosdr_source 0.set time now(osmosdr.time_spec_t(time.time()),

osmosdr .ALL _MBOARDS)
self.osmosdr_source_0O.set_sample_ rate(samp_rate)
self.osmosdr_source_0O.set_center_ freqg(frequency, 0)
self.osmosdr_source 0.set freq corr(frequency_correction, 0)
self.osmosdr_source 0O.set_dc_offset mode(2, 0)
self.osmosdr_source 0O.set_iq balance mode(2, 0)
self.osmosdr_source 0.set _gain mode(True, 0)
self.osmosdr_source 0.set_gain(10, 0)
self.osmosdr_source 0O.set if gain(10, 0)
self.osmosdr_source 0O.set bb gain(20, 0)
self.osmosdr_source_0.set_antenna("", 0)
self.osmosdr_source_ 0.set bandwidth(0, 0)

self.low pass_filter 0 = filter.fir filter ccf(
samp_rate/internal_samplerate,
firdes.low pass(1, samp_rate, 200000, 20e3,
firdes.WIN_HAMMING, 6.76))
self.audio_sink 0 = audio.sink(audio_samplerate, "", True)
self.analog_wfm rcv_0 = analog.wfm rcv(
quad_rate=internal_samplerate,
audio_decimation=internal samplerate/audio_samplerate,

self.analog_pwr_squelch xx 0 = analog.pwr_squelch cc(squelch level,

0.001, 1,

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 109/122

HHEHFE A A AR AR AR R R R R R
Connections

HHEHFE A A AR AR R R R R
self.connect((self.osmosdr_source_ 0, 0),

(self.analog_pwr_squelch xx 0, 0))
self.connect((self.rational resampler xxx 0 0, 0),

(self.wxgui_fftsink2 0, 0))
self.connect((self.rational resampler xxx 0 1, 0),

(self.wxgui_fftsink2 0 0, 0))
self.connect((self.analog_pwr_ squelch xx 0, 0),

(self.rational resampler xxx 0 0, 0))
self.connect((self.osmosdr_source 0, 0), (self.wxgui waterfallsink2 0, 0))
self.connect((self.analog wfm rcv_0, 0), (self.audio_sink 0, 0))
self.connect((self.low pass_filter 0, 0), (self.analog wfm rcv_0, 0))
self.connect((self.analog wfm rcv_0, 0),

(self.rational resampler xxx 0_1, 0))
self.connect((self.analog_pwr_ squelch xx 0, 0),

(self.low_pass_filter 0, 0))

def get_squelch level(self):
return self.squelch level

def set_squelch level(self, squelch level):
self.squelch level = squelch_level
self. squelch level slider.set value(self.squelch level)
self. squelch_level text box.set value(self.squelch level)
self.analog_pwr_squelch xx 0.set_threshold(self.squelch level)

def get samp rate(self):
return self.samp rate

def set samp rate(self, samp rate):
self.samp rate = samp_rate
self.osmosdr_source 0.set sample rate(self.samp_rate)
self.low pass_filter 0O.set_ taps(firdes.low_pass(l, self.samp rate,
200000, 20e3, firdes.WIN HAMMING, 6.76))
self.wxgui_waterfallsink2 0O.set_sample rate(self.samp_rate)

def get rf scope bandwidth(self):
return self.rf scope_bandwidth

def set_rf scope bandwidth(self, rf_ scope_bandwidth):
self.rf scope_bandwidth = rf scope_ bandwidth
self.wxgui_fftsink2 0O.set sample rate(self.rf scope_ bandwidth)

def get_ internal samplerate(self):
return self.internal samplerate

def set_internal samplerate(self, internal samplerate):
self.internal_samplerate = internal samplerate

def get frequency correction(self):
return self.frequency_correction

def set frequency correction(self, frequency correction):
self.frequency correction = frequency correction
self. frequency correction_slider.set value(self.frequency_ correction)
self. frequency correction_text box.set value(self.frequency correction)
self.osmosdr_source_ 0.set_ freq corr(self.frequency correction, 0)

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

110/122

def get frequency(self):
return self.frequency

def set_ frequency(self, frequency):
self.frequency = frequency
self. frequency slider.set value(self.frequency)
self. frequency text box.set value(self.frequency)
self.osmosdr_ source 0O.set_center freq(self.frequency, 0)
self.wxgui waterfallsink2 0.set baseband freq(self.frequency)

def get bf scope_bandwidth(self):
return self.bf scope bandwidth

def set bf scope_bandwidth(self, bf scope bandwidth):
self.bf scope_bandwidth = bf scope_bandwidth
self.wxgui fftsink2 0 _O.set_sample_rate(self.bf scope_bandwidth)

def get_ audio_samplerate(self):
return self.audio_samplerate

def set_audio_samplerate(self, audio_samplerate):
self.audio_samplerate = audio_samplerate

if _ name == ' main ':

import ctypes
import sys
if sys.platform.startswith('linux'):
try:
x11 = ctypes.cdll.LoadLibrary('libX1ll.so"')
x11.XInitThreads()
except:
print "Warning: failed to XInitThreads()"

parser = OptionParser(option_class=eng option, usage="%prog: [options]")

(options, args) = parser.parse_args()
tb = top_block()

tb.Start (True)

tb.Wait ()

Listing 55: Python code generated by gnuradio-companion for WBFM receiver

Software Defined Radio with Remote Head and Internet Clients

111/122

Scuola universitaria professionale della Svizzera italiana

B.2 - Narrow Band FM Monoaural Receiver

We designed a second “test” receiver to receive OM FM communications to verify the dongle
performances in the UHF band and also to characterize the received signal, allowing us to see
a large waterfall, in-channel spectrum, as well as audio spectrum.

Comparing this to the first realization, we added some controls to modify relevant dongle
parameters such as RF, IF, and BB gain. The relative flowgraph is shown in Picture 49.

Options WX GUI Chooser WX GUI Slider WX GUI Slider WX GUI Slider WX GUI Slider
ID: top_block ID: gain_mode ID: frequency ID: frequency_carrection ID: squelch_lewvel 1D: rf_gain
Generate Options: WX GUI Label: Gain Mode Label: Frequency Label: Fraquency correcction | | Label: Suilch level (dB) | | Label: Rf gain
Default Value: Autormnatic Default Value: 430.65M Default Value: 29 Default Value: -20 Default Value: 10
Choices: Manual, Automatic Minimum: 430M Minimum: 20 Minimum: -50 Minimum: -20
Variable Labels: Maximum: 440M Maximum: 40 Maximum: 0 Maximum: 50
ID: samp_rate Type: Drop Down Converter: Float Converter: Float Converter: Float Converter: Float
Value: 2.85M Grid Position: 4,1, 1, 1 Grid Position: 1, 1,1, 1 Grid Position: 2,1, 1, 1 Grid Position: 3, 1,1, 1 Grid Position: 5,1, 1, 1
e WX GUI FFT Sink WX GUI Slider
) Title: RF spectrum 1D: if_gain
ID: irternal_samplerate e s o Label: IF Gain (dB)
Value: sek Baseband Freq: 0 I3 U
Rational Resampler ¥ per Div: 10 dB Mmlfﬂum: -10
variable Interpolation: 96k ¥ Divs: 10 2‘:::::::; i‘l’oat
3 Decimation: 2.88M Ref Level (dB): O T er:
ID: audio_sarmplerate Taps: Ref Scale (p2p): 2 Grid Position: 6,1, 1, 1
b s Fractional BW: 0 FFT Size: 1.024k
Ll (s & WX GUI Slider
ID: rf_scope_bandwidth Frog Set Varna;nle' INOne Label: BaseBand Gain (dB)
Value: 9ek a 2 Default Value: 20
Power Squelch Minimurm: -10
Threshold (dB): -20 50
Variable . Alshem Low Pass Filter FM Demod Converter: Float
ID: bf_scope_bandwidth Ramp: 1 Decimation: 30 Channel Rate: 96k Grid Position: 7,1, 1, 1
s [Gate: Tes Gain: 1 Audio Decimation: 2
Sample Rate: 2.88M Deviation: 10k Audio Sink
Cutoff Freq: 20k Audio Pass: 3.3k Sample Rate: 42k
Transition Width: 20k Audio Stop: 4k
Window: Hamming Gain: 30
Beta: 6.76 Tau: 75u

WX GUI Waterfall Sink
Title: Waterfal Plot
Sample Rate: 2.88M
Baseband Freq: 430.65M

osmocom Source
Sync: PC Clack
MbO0: Clock Source: Internal
Mb0: Time Source: External
Sample Rate (sps): 2.88M
Cho: Frequency (Hz): 430.65M
Cho: Freq. Corr. {(ppm): 29
cho: DC off set Mode: Automnatic
Cho: 10 Balance Mode: Automatic
Cho: Gain Mode: Manual
Cho: RF Gain (dB): 10
Cho: IF Gain (dB): 10
Cho: BB Gain (dB): 20

WX GUI FFT Sink
Title: AF Spectrum
Sample Rate: gk
Baseband Freq: 0
Y per Div: 10 dB
¥ Divs: 10
:| » |: Ref Level (dB): 0

Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 5
Average Alpha: 0
Window Size: 400, 300
Grid Position: 0,1, 1,1
Freq Set Varname: None

Dynamic Range: 100
Reference Level: 0
[B——={]| refscale (p2p): 2

FFT Size: 512

FFT Rate: 15

Window: Elackman-Harris
Window Size: 400, 300
Grid Position: 0, 0,1, 1
Freq Set Varname: None

Rational Resampler
Interpolation: 2k
Decimation: 48k

Taps:

Fractional BW: 0

Picture 49: GNU Radio companion NBFM block diagram

The design of this radio is not very different from the previous one: mainly filters/samples to
cope with the different bandwidth, and gain commands added to explore how much sensible
the dongle could be. Also, we used a different demodulator block, more suitable to narrow
band FM demodulation.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

112/122

Waterfall Plot

Time (s)
I [+2]

&)

o

428.5 430 4305 431

Frequency (MHz)

431.5

..‘

432

-12dB

-25dB

-37dB

-50dB

-62dB

-75dB

-87dB

-100d8B |

Options
[Average

Axes Options
Time Scale: |+ || -

Dyn Range: |T|| =

Ref Level: |T||.

)
\
)
Color: | RGB1 |

| Autoscale

‘ Clear

‘ Stop

AF Spectrum

Trace Options
[Peak Hold

-10

-20

-30

-40

50

Amplitude (dB)

-70

-80

-90

¥ Average

Avg Alpha: 0.4000
—_—
[Persistence

[] Trace A |.Store|

[] Trace B |.St0re|

Axis Options
dB/Div:

Ref Level:

[+]-]
()]

| Autoscale |

-100
0 0.5 1 15 2 2.5

Frequency (kHz)

3 35 4
| Stop |

RF spectrum

-10

-20

-30

-40

-50

-60

Amplitude (dB)

-70

-80

-90

-100

Trace Options
[l Peak Hold
[Average

Frequency . |430.65M

|

=}

Frequency correcction: [29

|

[Persistence

i
[Trace A |St0re\
[Trace B |Store\

Axis Options
dB/Diwv:

Ref Level:

| Autoscale ‘

-40 -30 -20 -10 O 10

Frequency (kHz)

20

30

40

‘. Stop

Squilch level (dB): -47

|

Gain Mode:

| Automatic | ¢ |

RFgain: 10

|

IF Gain (aB): [10

|

= || BaseBand Gain (dB): [20

Picture 50: GNU Radio companion NBFM interface

The first times, this receiver was not simple to test because the very few transmission in UHF
Radio Amateur band, even if we listened on 432 MHz repeaters segment. Picture 50 shows a
very weak signal on 430.650 (maybe a spurious one?)
Using a block of attenuators we were able to test the emission of a transceiver to verify the
absence of spurious signals, and the audio characteristics.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 113/122

B.3 - SSB Receiver

This receiver is a little bit more complex than the previous, because it has an “if” stage used to
filter the signal before the demodulation, its flowgraph can be seen in Picture 51.

To test the concept we build a “proof of concept” using a GNU Radio tutorial that uses an I/Q
stream recorded using an USRP receiver operating on the 6m amateur band.

There are some differences in the flowgraph: a frequency translating filter conceptually
similar to the mixer-middle frequency channel in a super heterodyne receiver, and a
quadrature demodulator that implements a 'prostapheresys adder' between frequencies.

It must be noted that a Throttle block that “serves” the samples with a given sample rate must
be inserted after the File Source block.

-

ssb-from-Ffile.grc - fhomefgiovanni/Desktop/tesi-masterfgnu - GNU Radio Companion

File Edit View Run Tools Help

< S Fa
& X = & v b B QC
wbfm % | ssb-from-file % * [Audio]
» [Boolean Operators]
3
bt blo'it"‘"‘ WX GUI Slider WX GUI Slider T T e [Byte Operators]
: top_bloc -
- : E 3
Generate Options: WX GUI LETEy 1D: bfo Titie: RF Spectrum [Channelizers]
Label: freg Label: bfo
Sample Rate: 256k » [Channel Models]
Default Value: 51.5k Default Value: 1.5k Baseband Freq: 0
Variable Minimum: 20k Minimum; 1k T — » [Coding]
ID: t . : E
v Isar.“;g; 3 Maximum: 80k Maximum: 5k Y Divs: 10 » [control Port]
L= Converter: Float Converter: Float i
i Ref Level (dB): 90 » [DebugTools]
-
Ref Scale (p2p): 2
FFT Size: 1.024k > [Deprecated]
WX GUI FFT Sink s » [Digital Television]
. Average Alpha: 0 .
File Source B ::;:F;p:ecfr;;; Window Size: 400, 300 * [Equalizers]
File: .sb 256k complex2.dat Sample Rate: 256k Bascband Freg: 0 Grid Position: 0, 1, 1. 1 » [Error Coding]
Repeat: Yes . Freq Set Varname: None
Y per Div: 20 dB b [F([)]
¥ Divs: 10

> [File Operators]

Ref Level (dB): 80
= Ref Scale (p2p): 2 » [Filters]

Frequency Xlating FIR Filter

Decimation: 8 AAr U » [Fourier Analysis]
Taps: firdes.low_pass(1.sa Refresh Rate: 5 > [GUl widaet]

2 Jow,_| S > idaets
Center Frequency: 51.5k :;::;:ne:hlpl_l:.og . g
Sample Rate: 256k e Bl » [HOWTO]

Grid Position: 0,2,1,1
Freq Set Varname: None

» [Impairment Models
» [Instrumentation]

Signal Source »
Sample Rate: 32k L [Multip!! [IQBalance]
Waveform: Cosine [« mimnad * [Level Controllers]
Frequency: 15k A » [Math Operators |

. Rational Resampler
:::i:':e' ! [Interpolation: 44.1k *» [Measurement Tools |
i] Decimatlon: 32 > [Message Tools |
Complex To Float M Taps: g
Fractional BW: 0 » [Misc]
—= > [MODNAME]
Waveform: Sine » [Modulators]
e *» [Networking Tools]
Amplitude: 1 . [NOAA]

Offset: 0 Multiply Const Audio Sink
Constant: 30u Sample Rate: 44.1KHz
» [OFDM]

» [Packet Operators]

¥

Multiply

Y
[l

||

Picture 51: GNU Radio companion SSB from file block diagram

The results can be seen in Picture 52.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 114/122

Top Block
RF Spectrum T_race Options AF Spectrum Tia-:e Options
90 L [C] Peak Hold 20 L) |Peak Hold!
& & Average @ & Average
Avg Alpha: 0.4000 Avg Alpha: 0.4000
7o e - | 40 e - |
60 [C] Persistence 20 [C] Persistence
g 50 § Y ——
-] -]
2 i [[] Trace A |Store £ 2 [} Trace A |Store
a a
E [] Trace B |Store E [] Trace B |Store
20 Axis Options -60 Axis Options
10 dB/Div: +f - 80 dB/Div: + -
0 Ref Level: +f - -100 Ref Level: +| -
10 f Autoscale 120 Autoscale
-120-100 -80 -60 -40 -20 0 20 40 60 80 100 120 -15 -10 =3 0 5 10 15
Frequency (kHz) Stop Frequency (kHz) Stop
freq: |51.5k
I
bfe: | 1.5k
———) = |

Picture 52: GNU Radio companion SSB from file interface

To make the receiver a real one, the File source and the Throttle blocks must be substituted
with an Osmocom receiver source, and its Frequency control.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 115/122

B.4 - Knob Commands

The previous flowgraphs rely on the qt/wx GNU Radio widgets for controlling the input. But,
to obtain the look and feel of a real radio it is really important to have real commands as
knobs, to control things as frequency, volume, or audio gain.

This could be done with a little bit of ingenuity by using an Arduino board and some
encoders, and then, writing a block that reads the Arduino output and change the variable
accordingly.

The first thing to do is to attach two encoders to an Arduino: it is really simple, because it is
enough to connect their I/Q outputs on pins 2/4 and 3/5, and power the two encoders using
GND and 5V from the Arduino itself.

The Arduino is capable to set interrupts on pins 2 and 3. The interrupt reads the state of pins 2
and 4 (or pin 3 and 5) to determine the direction of movement of the first (or second) encoder,
then send an appropriate symbol as +/— (or >/< for the second encoder) over the serial USB.
All the code needed is presented in Listing 56.

#define encoderOPinA
#define encoderO0PinB
#define encoderlPinA
#define encoderlPinB
volatile unsigned int encoder(QPos = 0;
void setup() {

pinMode (encoder0PinA, INPUT);

digitalWrite(encoder0PinA, LOW);

pinMode (encoder0PinB, INPUT);

digitalWrite(encoder0PinB, LOW);

pinMode (encoderl1lPinA, INPUT);

digitalWrite(encoderlPinA, LOW);

pinMode (encoderl1lPinB, INPUT);

digitalWrite(encoderlPinB, LOW);

attachInterrupt (0, doEncoder0, CHANGE); // encoder pin on interrupt 0 - pin 2

attachInterrupt(l, doEncoderl, CHANGE); // encoder pin on interrupt 1 - pin 3

Serial.begin (9600);
}
void loop(){}
void doEncoder0() {

/* If pinA and pinB are both high or both low, it is spinning

* forward. If they're different, it's going backward.

U w N

*/

if (digitalRead(encoder(0PinA) == digitalRead(encoder0PinB)) {
Serial.print("+");

} else {
Serial.print("-");

}
}
void doEncoderl() {
/* If pinA and pinB are both high or both low, it is spinning
* forward. If they're different, it's going backward.

*/

if (digitalRead(encoderlPinA) == digitalRead(encoderlPinB)) {
Serial.print(">");

} else {

Serial.print("<");

}

Listing 56: Code to manage encoders on Arduino Uno board

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 116/122

The second thing to do is write a block that reads the signals. This could be done as seen
previously, but with some small differences, that can be seen in Listing 57. These differences
are related to the fact that the module is not a C++ module in the flowgraph signal path, but it
is a block that operate on a variable, without the need of a GUI.

gr_modtool newmod usbknobs

cd gr-usbknobs/

gr_modtool add -t general --skip-lib --skip-swig -1 python knobs
#Answer 'no' to generation on QA python code

mv grc/usbknobs_knobs.xml grc/variable knobs.xml

insert xml code

vi grc/variable_knobs.xml

insert python code

vi python/knobs.py

mkdir build; cd build; cmake ..; make; cd ..

Listing 57: Usbknobs module generation

Please note that the name of the block is not usbknobs_knobs.xml, as expected, but, instead,
variable_knobs.xml. This is because gnuradio-companion, when generating top_level.py,
operates differently when a block name starts with the string 'variable', generating code for
variables and callbacks. Also the <key> element has the same name, as it can be seen in red in
Listing 58.

In Listing 58, the <var_make> element that contains the variable definition is presented in
blue, the <make> element that contains the python code to instance the knob class is
presented in green, and the <callback> element that contains the setter callback that the class
will call when a new value arrive is presented in magenta. All those elements became part of
top_block.py that is the python application generated and launched by gnuradio-companion.

<?xml version="1.0"?>

<block>
<name>knobs</name>
<key>variable knobs</key>
<category>usbknobs</category>
<import>import usbknobs</import>
<var_make>self.$(id)=$(id)=$value</var_make>
<make>usbknobs.knobs (
value=self.$id,
callback=self.set_$(id),
port=$serial port,
speed=$ser_speed,
minimum=$min,
maximum=$max,
step_value=$step value,
cast=$(converter.knob cast),
channel=S$channel,
islinear=$(is_linear.knob_islinear),

</make>
<callback>self.set_$(id) (self,$value)</callback>
<param>
<name>Serial port</name>
<key>serial port</key>
<value>/dev/ttyUSBO0</value>
<type>string</type>
<hide>part</hide>

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 117/122

</param>
<param>
<name>Serial speed</name>
<key>ser_speed</key>
<value>9600</value>
<type>int</type>
<hide>part</hide>
</param>
<param>
<name>Default Value</name>
<key>value</key>
<value>50</value>
<type>real</type>
</param>
<param>
<name>Minimum</name>
<key>min</key>
<value>0</value>
<type>real</type>
</param>
<param>
<name>Maximum</name>
<key>max</key>
<value>100</value>
<type>real</type>
</param>
<param>
<name>Step Value</name>
<key>step value</key>
<value>100</value>
<type>real</type>
</param>
<param>
<name>Converter</name>
<key>converter</key>
<value>float_converter</value>
<type>enum</type>
<hide>part</hide>
<option>
<name>Float</name>
<key>float_ converter</key>
<opt>knob_cast:float</opt>
</option>
<option>
<name>Integer</name>
<key>int_ converter</key>
<opt>knob_cast:int</opt>
</option>
</param>
<param>
<name>Channel</name>
<key>channel</key>
<value>0</value>
<type>int</type>
<hide>part</hide>
</param>
<param>
<name>Is linear</name>
<key>is_linear</key>
<value>knob_islinear</value>
<type>enum</type>
<hide>part</hide>

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 118/122

<option>
<name>Linear</name>
<key>is_linear</key>
<opt>knob_islinear:True</opt>
</option>
<option>
<name>Logaritmic</name>
<key>is_log</key>
<opt>knob_islinear:False</opt>
</option>
</param>
<check>$min <= $value <= $max</check>
<check>$min < S$max</check>
<doc>
This block creates a variable with a slider. \
Leave the label blank to use the variable id as the label. \
The value must be a real number. \
The value must be between the minimum and the maximum. \
The number of steps must be between 0 and 1000.

Use the Grid Position (row, column, row span, column span) \
to position the graphical element in the window.

Use the Notebook Param (notebook-id, page-index) \

to place the graphical element inside of a notebook page.
</doc>

</block>

Listing 58: Knobs block XML description

Gnuradio-companion uses all the <param> elements to prepare the GUI. The values of the
modified ones are written in the xml file where the flowgraph is saved.

The other important file is the python class that reads the Arduino output and set accordingly
the values by calling the callback written in top_block.py.

This file (that can be seen in Listing 59) lays in the python folder in the gr-usbknob module
folder and it is named knobs.py.

#!/usr/bin/env python
-*- coding: utf-8 -*-

import thread

import threading

import serial

from gnuradio import gr

up:['+'l'>'I'Ulllull'R'I'r']
down=['-','<','D','d','L','1"]
ports=[]

ser=[]

events=[]

channels=[]

data=[]

class knobs(object):

[INTRT]

docstring for block knobs

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana 119/122

[IUNTRT]

def _ init (self, value, callback, port, speed, minimum, maximum,
step_value, cast, channel, islinear):
katch=False
for po in ports:
if po==port:
katch=True
break
if not katch:
ports.append(port)
serl = serial.Serial(port,speed)
ser.append(serl)
thread.start_new_thread(rC, (self,serl))
data.append(0)
events.append(threading.Event())
channels.append(channel)
events[-1].clear()
thread.start_new_thread(sF, (self, value, callback, len(events)-1,
minimum, maximum, step value, cast, channel, islinear))

def rC(tb,ser):
while True:
incr = ser.read()
for j in range(len(channels)):
if incr==up[channels[j]] or incr==down[channels[]j]]:

data[j]=incr;
events[j].set()
break

ser.flushInput()

def sF(tb,value,callback,num,minimum,maximum,step value,cast,channel,islinear):
vls = value
min = minimum
max = maximum

while True:
events[num].wait()
incr = data[num]
data[num]=0
if incr == up[channel]:
if islinear:
vls += step_value
else:
vls *= step_value
if vls > max:
vls=max
callback(vls)
if incr == down[channel]:
if islinear:
vls -= step_value
else:
vls /= step value
if vls < min:
vls=min
callback(vls)
events[num].clear()

Listing 59: Knobs python class

Software Defined Radio with Remote Head and Internet Clients

120/122

Scuola universitaria professionale della Svizzera italiana

In Listing 59 there is also the class initializer. This metod verifies if there is a reader
registered for the port serial line. If the reader is not registered, the port value is not in the
ports[] array, and the init function creates a thread based on the rC() function.

Once it has done this, the initializer creates another thread, based on the sF() function, to
manage the single channel. The channels correspond to the different encoders. They send
different couples of characters on the same serial line.

The rC() function opens the serial port and reads a character, then it dispatches the character
to the right buffer, corresponding to the channel, and fires the right thread.

The sF() function waits for an event, then computes the value and fires the callback to put the
value in the right variable. The sF() function can compute the value operating either in linear
or in logarithmic mode, because linear is needed for frequencies, but logarithmic is better for
audio volumes.

nbfm-sint.grc - fhomefgiovanni/Desktop/tesi-master/gnu - GNU Radio Companion

File Edit View Run Tools Help

. S [p=
TEX 5 b m QcC
» [Audio]
Options WX GUI Chooser WX GUI Slider knobs knobs WX GUI Slider
1D: top_block 1D: gain_ mode 1D: If_gain ID: squelch level 1D: frequency 1D: bb_gain » [Boolean Operators]
Generate Options: WX GUI | | Label: Gain Mode Label: Rf gain Default Value: -20 | | Default Value: 145.6M Label: BaseBand Gain (dB) » [Byte Operators |
Default Value: True Default Value: 20 Minimum: -100 Minimum: 144M Default Value: 20 .
)) i i) » [Channelizers]
Cholces: 0, 1 Minimum: -20 Maximum: 100 Maximum: 146M Minimum: -10
‘."’"‘“"e Labels: Maximum: 100 Step Value: 1 Step Value: 25k Maximum: 50 » [channel Models]
1D: samp_rate Type: Drop Down Converter: Float Converter: Float » [Coding]
Value: 2,851 Grid Position: 5,1,1,1 | | Grid Position: 6,1, 1, 1 Grid Position: B, 1,1, 1 9
CELLILLARTLL: » [Control Port]
Title: RF spectrum
Variable WX GUI Slider Sample Rate: 96k * [DebugTools]
ID: internal_samplerate 1D: if_gain Freq: 0 Variable » [D ted]
: Label: IF Gain (dB . 1D: . bandwidth eprecate
LR Delanll\fn?:eE EDJ Rational Resampler Y per Div: 10 dB Valnn_-sgl:ze_ ande L. .
e Interpolation: 96k ¥ Divs: 10 : » [Digital Television]
P e oot [l fl et e N
: audio_samplerate . 2 B . .
Value: a8k g‘:;"::;’i;i_";tl 1 Fractional BW: 0 FFT Size: 1.024k 1D: bf_scope_bandwidth [Error Coding]
S Refresh Rate: 5 Value: 8k » [FCD]
Window Size: 400, 300 y
Power Squelch i P:sm:_ Losa » [File Operators]
Threshald (dB): -20 T L Variable » [Filters]
RTL-SDR Source a 5 1D: frequency_correction . .
Sync: PC Clock Value: 29 * [Fourier Analysis]
MbO: Clock Source: Internal Low Pass Filter FM Demod » [GUI Widgets |
Mb0: Time Source: External Decimation: 30 ‘Channel Rate: 96k
Sample Rate (sps): 2.58M T —— Gain: 1 Audio Decimation: 2 > [HOWTO]
‘ChO: Frequency (Hz): 145.6M Title: Waterfall Plot Sample Rate: 2.88M H Deviation: 10k]_ I Audio Sink > [Impairment Models]
€ho: Freq. Corr. (ppm): 29 P Cutorr Freg: 20k Audio Pass: 3.3k Sample Rate: 48k .
Sample Rate: 2.85M » [Instrumentation]
Ch0: DC Offset Mode: Off Paseband Freq: 145,64 Transition Width: 20k Audio Stop: 4k
Cho: 1Q Balance Mode: Automatic e = 100 Window: Hamming Gain: 30 P —— » [1QBalance]
Cho: Gain Mode: True e Beta:676 Tau: 5 Title: AF Spectrum » [KEYKNOBS]
Cho: RF Gain (dB): 20 : kL

Ref Scale (p2p): 2
FFT Size: 512

FFT Rate: 15

Windew: Blackman-Harris
Window Size: 400, 300
Grid Position: 0,0, 1,1
Freq Set Varname: None

Sample Rate: Bk
Baseband Freq: 0
Y per Div: 10 dB
¥ Divs: 10
:l » l: Ref Level (dB): 0

Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 5
Average Alpha: 0
Window Size: 400, 300
Grid Position: 0,1, 1, 1
Freq Set Varname: None

» [Level Controllers]
» [Math Operators]
» [Measurement Tools]

Cho: IF Gain (dB): 50
Cho: BE Gain (dB): 20

Rational Resampler
Interpolation: 8k
Decimation: 48k
Taps:

Fractional BW: 0

» [Message Tools]

» [Misc]

» [MODNAME]

» [Modulators]

» [Networking Tools]
> [NOAA]

» [OoFDM]

SNOWING: “/NOMe/gIovanni/ UESKLOp/ [es-Master/gnu/NDrm-SInc.gre’

Picture 53: GNU Radio companion NBFM with knobs block diagram

In the central upper part of Picture 53 the two knobs blocks that control both squelch level and
frequency are presented. As can be seen in Picture 55, there are no GUI controls for these
blocks, the controls are physical controls that can be seen in Picture 54.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

Picture 54: Arduino Uno manages two optical incremental encoder

121/122

Top Block

Trace Options

Picture 55: GNU Radio companion NBFM with knobs GUI

Waterfall Plot AF Spectrum i
ods | Options 0 [Peak Hold
[} Average 10 & Average
g12d8 Avg Alpha: 0.4000
20 —)
2508 B
-30 Wﬂwwwwmn [] Persistence
_37ds | Axes Options -
. g -
ko Time Scale: + = —
¥ — e B
E 5066 Dyn Range: + % 50 || Trace A | Sstore
6248 | Ref Level: + s [Trace B | Store
- = e Axis Options
s | Color:| RGB3 = : L
Autoscale 450 BiDiZ IS
i -90 Ref Level: i
0 -100dB Clear 100 Autoscale
1445 145 1455 146 1465 0 05 1 15 2 25 3 35
Frequency (MHz) Stop Frequency (kHz) Stop
RF spectrum Bl | Trace options
0 "] Peak Hold
10] Average
-20 oEEssss———
-30 [[] Persistence
) —_—
k] .
2 50 |_| Trace A |Store
E -60 (] Trace B [store| |GainMode: True 3
i i Rf gain: | 20
-70 Axis Options -
. J
80 dB/Div: A)
Ref Level: i IF Gain (dB): | 50
-90 — 3
Autoscale
-100 : .
40 30 20 10 0 10 20 30 40 BaseBand Gain (dB): |20
Frequency (kHz) Stop }

In Listing 60 is presented the XML code that defines the variable_knobs block that
implements the frequency control. The code is used to save the position in the graph, as can be
seen in Picture 55, and the values changed during the flowgraph editing.

Software Defined Radio with Remote Head and Internet Clients

Scuola universitaria professionale della Svizzera italiana

122/122

<block>
<key>variable_knobs</key>
<param>
<key>id</key>
<value>frequency</value>
</param>
<param>
<key>_enabled</key>
<value>True</value>
</param>
<param>
<key>serial port</key>
<value>/dev/ttyUSB0</value>
</param>
<param>
<key>ser_ speed</key>
<value>9600</value>
</param>
<param>
<key>value</key>
<value>145600000</value>
</param>
<param>
<key>min</key>
<value>144000000</value>
</param>
<param>
<key>max</key>
<value>146000000</value>
</param>
<param>
<key>step value</key>
<value>25000</value>
</param>
<param>
<key>converter</key>
<value>float_converter</value>
</param>
<param>
<key>channel</key>
<value>0</value>
</param>
<param>
<key>is_linear</key>
<value>is_linear</value>
</param>
<param>
<key>alias</key>
<value></value>
</param>
<param>
<key>_ coordinate</key>
<value>(600, 11)</value>
</param>
<param>
<key>_ rotation</key>
<value>0</value>
</param>
</block>

Listing 60: Part of grc XML file with frequency variable_knobs definition

Software Defined Radio with Remote Head and Internet Clients

